889 resultados para Unconditional Convergence
Resumo:
Algorithms for planning quasistatic attitude maneuvers based on the Jacobian of the forward kinematic mapping of fully-reversed (FR) sequences of rotations are proposed in this paper. An FR sequence of rotations is a series of finite rotations that consists of initial rotations about the axes of a body-fixed coordinate frame and subsequent rotations that undo these initial rotations. Unlike the Jacobian of conventional systems such as a robot manipulator, the Jacobian of the system manipulated through FR rotations is a null matrix at the identity, which leads to a total breakdown of the traditional Jacobian formulation. Therefore, the Jacobian algorithm is reformulated and implemented so as to synthesize an FR sequence for a desired rotational displacement. The Jacobian-based algorithm presented in this paper identifies particular six-rotation FR sequences that synthesize desired orientations. We developed the single-step and the multiple-step Jacobian methods to accomplish a given task using six-rotation FR sequences. The single-step Jacobian method identifies a specific FR sequence for a given desired orientation and the multiple-step Jacobian algorithm synthesizes physically feasible FR rotations on an optimal path. A comparison with existing algorithms verifies the fast convergence ability of the Jacobian-based algorithm. Unlike closed-form solutions to the inverse kinematics problem, the Jacobian-based algorithm determines the most efficient FR sequence that yields a desired rotational displacement through a simple and inexpensive numerical calculation. The procedure presented here is useful for those motion planning problems wherein the Jacobian is singular or null.
Resumo:
Cooperation among unrelated individuals is an enduring evolutionary riddle and a number of possible solutions have been suggested. Most of these suggestions attempt to refine cooperative strategies, while little attention is given to the fact that novel defection strategies can also evolve in the population. Especially in the presence of punishment to the defectors and public knowledge of strategies employed by the players, a defecting strategy that avoids getting punished by selectively cooperating only with the punishers can get a selective benefit over non-conditional defectors. Furthermore, if punishment ensures cooperation from such discriminating defectors, defectors who punish other defectors can evolve as well. We show that such discriminating and punishing defectors can evolve in the population by natural selection in a Prisoner’s Dilemma game scenario, even if discrimination is a costly act. These refined defection strategies destabilize unconditional defectors. They themselves are, however, unstable in the population. Discriminating defectors give selective benefit to the punishers in the presence of non-punishers by cooperating with them and defecting with others. However, since these players also defect with other discriminators they suffer fitness loss in the pure population. Among the punishers, punishing cooperators always benefit in contrast to the punishing defectors, as the latter not only defect with other punishing defectors but also punish them and get punished. As a consequence of both these scenarios, punishing cooperators get stabilized in the population. We thus show ironically that refined defection strategies stabilize cooperation. Furthermore, cooperation stabilized by such defectors can work under a wide range of initial conditions and is robust to mistakes.
Resumo:
Introduction: Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced MRI has been shown to be a useful modality to image activated macrophages in vivo, which are principally responsible for plaque inflammation. This study determined the optimum imaging time-window to detect maximal signal change post-USPIO infusion using T1-weighted (T1w), T2*- weighted (T2*w) and quantitative T2*(qT 2*) imaging. Methods: Six patients with an asymptomatic carotid stenosis underwent high resolution T1w, T2*w and qT2*MR imaging of their carotid arteries at 1.5 T. Imaging was performed before and at 24, 36, 48, 72 and 96 h after USPIO (Sinerem™, Guerbet, France) infusion. Each slice showing atherosclerotic plaque was manually segmented into quadrants and signal changes in each quadrant were fitted to an exponential power function to model the optimum time for post-infusion imaging. Results: The power function determining the mean time to convergence for all patients was 46, 41 and 39 h for the T1w, T 2*w and qT2*sequences, respectively. When modelling each patient individually, 90% of the maximum signal intensity change was observed at 36 h for three, four and six patients on T1w, T 2*w and qT2*, respectively. The rates of signal change decrease after this period but signal change was still evident up to 96 h. Conclusion: This study showed that a suitable imaging window for T 1w, T2*w and qT2*signal changes post-USPIO infusion was between 36 and 48 h. Logistically, this would be convenient in bringing patients back for one post-contrast MRI, but validation is required in a larger cohort of patients.
Resumo:
The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.
Resumo:
In monsoon regions, the seasonal migration of the intertropical convergence zone (ITCZ) is manifested as a seasonal reversal of winds. Most of the summer monsoon rainfall over India occurs owing to synoptic and large-scale convection associated with the continental ITCZ (Fig. 1). We have investigated the interaction between these large-scale convective systems and the ocean over which they are generated1â3, concentrating on the relationship between organized convection over the Indian Ocean and sea surface temperature (SST). We report here that on a monthly basis the degree of cloudiness correlates well with SST for the relatively colder oceans, but when SST is maintained above 28 °C it ceases to be an important factor in determining the variability of cloudiness. Over the major regions of convection east of 70°E, which are warm year after year, the observed cloudiness cannot be correlated with variations in SST.
Resumo:
A 'pseudo-Bayesian' interpretation of standard errors yields a natural induced smoothing of statistical estimating functions. When applied to rank estimation, the lack of smoothness which prevents standard error estimation is remedied. Efficiency and robustness are preserved, while the smoothed estimation has excellent computational properties. In particular, convergence of the iterative equation for standard error is fast, and standard error calculation becomes asymptotically a one-step procedure. This property also extends to covariance matrix calculation for rank estimates in multi-parameter problems. Examples, and some simple explanations, are given.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
Learning automata arranged in a two-level hierarchy are considered. The automata operate in a stationary random environment and update their action probabilities according to the linear-reward- -penalty algorithm at each level. Unlike some hierarchical systems previously proposed, no information transfer exists from one level to another, and yet the hierarchy possesses good convergence properties. Using weak-convergence concepts it is shown that for large time and small values of parameters in the algorithm, the evolution of the optimal path probability can be represented by a diffusion whose parameters can be computed explicitly.
Resumo:
A modified least mean fourth (LMF) adaptive algorithm applicable to non-stationary signals is presented. The performance of the proposed algorithm is studied by simulation for non-stationarities in bandwidth, centre frequency and gain of a stochastic signal. These non-stationarities are in the form of linear, sinusoidal and jump variations of the parameters. The proposed LMF adaptation is found to have better parameter tracking capability than the LMS adaptation for the same speed of convergence.
Resumo:
Multi-objective optimization is an active field of research with broad applicability in aeronautics. This report details a variant of the original NSGA-II software aimed to improve the performances of such a widely used Genetic Algorithm in finding the optimal Pareto-front of a Multi-Objective optimization problem for the use of UAV and aircraft design and optimsaiton. Original NSGA-II works on a population of predetermined constant size and its computational cost to evaluate one generation is O(mn^2 ), being m the number of objective functions and n the population size. The basic idea encouraging this work is that of reduce the computational cost of the NSGA-II algorithm by making it work on a population of variable size, in order to obtain better convergence towards the Pareto-front in less time. In this work some test functions will be tested with both original NSGA-II and VPNSGA-II algorithms; each test will be timed in order to get a measure of the computational cost of each trial and the results will be compared.
Resumo:
Three new procedures - in the context of estimation of virial coefficients and summation of the partial virial series for hard discs and hard spheres - are proposed. They are based on the parametrised Euler transformation, a novel resummation, identity and the ε-convergence methods respectively. A comparison with other estimates (molecular dynamics, graph theory and empirical methods) reveals satisfactory agreement.
Resumo:
This study uses agent based modelling to simulate the worker interactions within a workplace and to investigate how the interactions can have impact on the workplace dynamics. Two new models (Bounded Confidence with Bias model and Relative Agreement with Bias model) are built based on the theoretical foundation of two existing models. A new factor, namely bias, is added into the new models which raises several issues to be studied.
Resumo:
A new tribe, the Stereomerini, is established for four unusual genera: Stereomera Arrow, Termitaxis Krikken, Australoxenella n.gen., and Bruneixenus n.gen. The previously described genera are monotypic, as is Bruneixenus, the type species being B. squamosus n.sp. from Brunei. Australoxenella contains two new species, A. humptydooensis, type species, and A. bathurstensis, both from the Northern Territory, Australia. The relationships of the new tribe are analyzed and compared with the most closely related tribe, the Rhyparini, in the Aphodiinae. The tribe Rhyparini is redefined, and the genus Notocaulus Quedenfeldt is transferred to the Eupariini. A key to genera in both the Stereomerini and the Rhyparini is presented, important characters are illustrated, a cladogram is given, and convergence is discussed.