945 resultados para UPWELLING ECOSYSTEM
Resumo:
Top predators can have large effects on community and population dynamics but we still know relatively little about their roles in ecosystems and which biotic and abiotic factors potentially affect their behavioral patterns. Understanding the roles played by top predators is a pressing issue because many top predator populations around the world are declining rapidly yet we do not fully understand what the consequences of their potential extirpation could be for ecosystem structure and function. In addition, individual behavioral specialization is commonplace across many taxa, but studies of its prevalence, causes, and consequences in top predator populations are lacking. In this dissertation I investigated the movement, feeding patterns, and drivers and implications of individual specialization in an American alligator (Alligator mississippiensis ) population inhabiting a dynamic subtropical estuary. I found that alligator movement and feeding behaviors in this population were largely regulated by a combination of biotic and abiotic factors that varied seasonally. I also found that the population consisted of individuals that displayed an extremely wide range of movement and feeding behaviors, indicating that individual specialization is potentially an important determinant of the varied roles of alligators in ecosystems. Ultimately, I found that assuming top predator populations consist of individuals that all behave in similar ways in terms of their feeding, movements, and potential roles in ecosystems is likely incorrect. As climate change and ecosystem restoration and conservation activities continue to affect top predator populations worldwide, individuals will likely respond in different and possibly unexpected ways.
Resumo:
We developed diatom-based prediction models of hydrology and periphyton abundance to inform assessment tools for a hydrologically managed wetland. Because hydrology is an important driver of ecosystem change, hydrologic alterations by restoration efforts could modify biological responses, such as periphyton characteristics. In karstic wetlands, diatoms are particularly important components of mat-forming calcareous periphyton assemblages that both respond and contribute to the structural organization and function of the periphyton matrix. We examined the distribution of diatoms across the Florida Everglades landscape and found hydroperiod and periphyton biovolume were strongly correlated with assemblage composition. We present species optima and tolerances for hydroperiod and periphyton biovolume, for use in interpreting the directionality of change in these important variables. Predictions of these variables were mapped to visualize landscape-scale spatial patterns in a dominant driver of change in this ecosystem (hydroperiod) and an ecosystem-level response metric of hydrologic change (periphyton biovolume). Specific diatom assemblages inhabiting periphyton mats of differing abundance can be used to infer past conditions and inform management decisions based on how assemblages are changing. This study captures diatom responses to wide gradients of hydrology and periphyton characteristics to inform ecosystem-scale bioassessment efforts in a large wetland.
Resumo:
The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.
Resumo:
The Everglades is a sub-tropical coastal wetland characterized among others by its hydrological features and deposits of peat. Formation and preservation of organic matter in soils and sediments in this wetland ecosystem is critical for its sustainability and hydrological processes are important divers in the origin, transport and fate of organic matter. With this in mind, organic matter dynamics in the greater Florida Everglades was studied though various organic geochemistry techniques, especially biomarkers, bulk and compound specific δ13C and δD isotope analysis. The main objectives were focused on how different hydrological regimes in this ecosystem control organic matter dynamics, such as the mobilization of particulate organic matter (POM) in freshwater marshes and estuaries, and how organic geochemistry techniques can be applied to reconstruct Everglades paleo-hydrology. For this purpose organic matter in typical vegetation, floc, surface soils, soil cores, and estuarine suspended particulates were characterized in samples selected along hydrological gradients in the Water Conservation Area 3, Shark River Slough and Taylor Slough. ^ This research focused on three general themes: (1) Assessment of the environmental dynamics and source-specific particulate organic carbon export in a mangrove-dominated estuary. (2) Assessment of the origin, transport and fate of organic matter in freshwater marsh. (3) Assessment of historical changes in hydrological conditions in the Everglades (paleo-hydrology) though biomarkes and compound specific isotope analyses. This study reports the first estimate of particulate organic carbon loss from mangrove ecosystems in the Everglades, provides evidence for particulate organic matter transport with regards to the formation of ridge and slough landscapes in the Everglades, and demonstrates the applicability of the combined biomarker and compound-specific stable isotope approach as a means to generate paleohydrological data in wetlands. The data suggests that: (1) Carbon loss from mangrove estuaries is roughly split 50/50 between dissolved and particulate carbon; (2) hydrological remobilization of particulate organic matter from slough to ridge environments may play an important role in the maintenance of the Everglades freshwater landscape; and (3) Historical changes in hydrology have resulted in significant vegetation shifts from historical slough type vegetation to present ridge type vegetation. ^
Resumo:
Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Omega arag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Omega arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Omega arag. If the short-term sensitivity of community calcification to Omega arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Coral reefs face unprecedented threats throughout most of their range. Poorly planned coastal development has contributed increased nutrients and sewage contamination to coastal waters, smothering some corals and contributing to overgrowth by macroalgae. My approach to assessing the degree to which coral reef ecosystems have been influenced by terrestrial and anthropogenic organic carbon inputs is through the use of carbon (C) and nitrogen (N) stable isotopes and lipid biomarkers in a marine protected area, the Coral Reef System of Veracruz: Parque Nacional Sistema Arrecifal Veracruzano (PNSAV) in the southwest Gulf of Mexico. Firstly, I used a C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor to reveal the primary producer sources that fuel the coral reef food web. Secondly, I used lipid classes, FA and sterol biomarkers to determine production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, I used coprostanol to determine pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential metabolite FA for marine fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while seagrass non-essential FA are transferred to the entire food web mainly in the rainy season. Sea urchins may be the main consumers of brown macroalgae, especially in the dry season, while surgeon fish prefer red algae in both dry and rainy seasons. C and N isotopic values and the ratio C:N suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and seagrass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly in the rainy season. The nearest river to the PNSAV was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. I would suggest monitoring δ¹⁵N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the PNSAV.
Resumo:
We reconstructed a high-resolution, alkenone-based sea surface temperature (SST) record spanning the last ca. 150 years, from a sediment core retrieved within the main upwelling zone off Peru. A conspicuous SST decline is evidenced since the 1950s despite interdecadal SST variability. Instrumental SST data and reanalysis of ECMWF ERA 40 winds suggest that the recent coastal cooling corresponds mainly to an intensification of alongshore winds and associated increase of upwelling in spring. Consistently, both proxy and instrumental data evidence increased productivity in phase with the SST cooling. Our data expand on previous reports on recent SST cooling in other Eastern Boundary upwelling systems and support scenarios that relate coastal upwelling intensification to global warming. Yet, further investigations are needed to assess the role of different mechanisms and forcings (enhanced local winds vs. spin-up of the South Pacific High Pressure cell).
Resumo:
A set of 40 Uranium-series datings obtained on the reef-forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata revealed that during the past 400 kyr their occurrence in the Gulf of Cádiz (GoC) was almost exclusively restricted to glacial periods. This result strengthens the outcomes of former studies that coral growth in the temperate NE Atlantic encompassing the French, Iberian and Moroccan margins dominated during glacial periods, whereas in the higher latitudes (Irish and Norwegian margins) extended coral growth prevailed during interglacial periods. Thus it appears that the biogeographical limits for sustained cold-water coral growth along the NE Atlantic margin are strongly related to climate change. By focussing on the last glacial-interglacial cycle, this study shows that palaeo-productivity was increased during the last glacial. This was likely driven by the fertilisation effect of an increased input of aeolian dust and locally intensified upwelling. After the Younger Dryas cold event, the input of aeolian dust and productivity significantly decreased concurrent with an increase in water temperatures in the GoC. This primarily resulted in reduced food availability and caused a widespread demise of the formerly thriving coral ecosystems. Moreover, these climate induced changes most likely caused a latitudinal shift of areas withoptimum coral growth conditions towards the northern NE Atlantic where more suitable environmental conditions established with the onset of the Holocene.
Resumo:
Halocarbons, halogenated short-chained hydrocarbons, are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling obtained during the M91 cruise onboard the research vessel Meteor in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group as likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L-1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L-1 and diiodomethane (CH2I2) of up to 32.4 pmol L-1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. The enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels.
Resumo:
Grassland birds are highly imperiled because of historical habitat loss and ongoing conversion of grasslands to agricultural and urban land uses. Therefore, prioritizing and further justifying conservation action in remaining grasslands is critical to protecting what remains. Grassland bird conservation has focused on identifying and protecting large grassland complexes referred to as Grassland Bird Conservation Areas (GBCAs). We identified and classified GBCAs in a region highly impacted by both agricultural and urban land conversion using previously developed methods. Then, we extended the analysis to include estimated relative abundance of five grassland focal species in each GBCA. Models of relative abundance were built using eight years of monitoring data collected by citizen scientists. Finally, we quantified the value of ecosystem services provided by each GBCA. There were nearly 55,000 ha of grassland habitats in the Chicago Metropolitan Region that met GBCA criteria, 33% (18,415 ha) of which were protected. Proportion of abundance in protected versus unprotected areas was similar for Bobolink (Dolichonyx oryzivorus; 46%), Grasshopper Sparrow (Ammodramus savannarum; 52%), and Sedge Wren (Cistothorus platensis; 48%), whereas, Henslow’s Sparrow (Ammodramus henslowii; 75%) had a higher proportion of relative abundance in protected GBCAs and Eastern Meadowlark (Sturnella magna) had lower proportions (37%). GBCAs provisioned just under $900 million annually in ecosystem services, 73% of which is because of flood control. Outputs of this comprehensive approach will inform grassland bird conservation by providing detailed information about the value for birds and people of grassland habitats.
Resumo:
The Greater Everglades system imparts vital ecosystem services (ES) to South Florida residents including high quality drinking water supplies and a habitat for threatened and endangered species. As a result of the altered Everglades system and regional dynamics, restoration may either improve the provision of these services or impose a tradeoff between enhanced environmental goods and services and competing societal demands. The current study aims at understanding public preferences for restoration and generating willingness to pay (WTP) values for restored ES through the implementation of a discrete choice experiment. A previous study (Milon et al., 1999) generated WTP values amongst Floridians of up to $3.42 -$4.07 billion for full restoration over a 10-year period. We have collected data from 2,905 respondents taken from two samples who participated in an online survey designed to elicit the WTP values for selected ecological and social attributes included in the earlier study (Milon et al. 1999). We estimate that the Florida general public is willing to pay up to $854.1- $954.1 million over 10 years to avoid restrictions on their water usage and up to $90.8- $183.7 million over 10 years to restore the hydrological flow within the Water Conservation Area.
Resumo:
Export production is an important component of the carbon cycle, modulating the climate system by transferring CO2 from the atmosphere to the deep ocean via the biological pump. Here we use barite accumulation rates to reconstruct export production in the eastern equatorial Pacific over the past 4.3 Ma. We find that export production fluctuated considerably on multiple time scales. Export production was on average higher (51 g C/m**2/yr) during the Pliocene than the Pleistocene (40 g C/m**2/yr), decreasing between 3 and 1 Ma (from more than 60 to 20 g C/m**2/yr) followed by an increase over the last million years. These trends likely reflect basin-scale changes in nutrient inventory and ocean circulation. Our record reveals decoupling between export production and temperatures on these long (million years) time scale. On orbital time scales, export production was generally higher during cold periods (glacial maxima) between 4.3 and 1.1 Ma. This could be due to stronger wind stress and higher upwelling rates during glacial periods. A shift in the timing of maximum export production to deglaciations is seen in the last ~1.1 million years. Results from this study suggest that, in the eastern equatorial Pacific, mechanisms that affect nutrient supply and/or ecosystem structure and in turn carbon export on orbital time scales differ from those operating on longer time scales and that processes linking export production and climate-modulated oceanic conditions changed about 1.1 million years ago. These observations should be accounted for in climate models to ensure better predictions of future climate change.