940 resultados para Tumor Progression
Resumo:
Osteosarcoma (OS) is a primary bone tumor that is most prevalent during adolescence. RUNX2, which stimulates differentiation and suppresses proliferation of osteoblasts, is deregulated in OS. Here, we define pathological roles of RUNX2 in the etiology of OS and mechanisms by which RUNX2 expression is stimulated. RUNX2 is often highly expressed in human OS biopsies and cell lines. Small interference RNA (siRNA)-mediated depletion of RUNX2 inhibits growth of U2OS OS cells. RUNX2 levels are inversely linked to loss of p53 (which predisposes to OS) in distinct OS cell lines and osteoblasts. RUNX2 protein levels decrease upon stabilization of p53 with the MDM2 inhibitor Nutlin-3. Elevated RUNX2 protein expression is post-transcriptionally regulated and directly linked to diminished expression of several validated RUNX2 targeting microRNAs (miRNAs) in human OS cells compared to mesenchymal progenitor cells. The p53-dependent miR-34c is the most significantly down-regulated RUNX2 targeting miRNA in OS. Exogenous supplementation of miR-34c markedly decreases RUNX2 protein levels, while 3UTR reporter assays establish RUNX2 as a direct target of miR-34c in OS cells. Importantly, Nutlin-3 mediated stabilization of p53 increases expression of miR-34c and decreases RUNX2. Thus, a novel RUNX2-p53-miR34 network controls cell growth of osseous cells and is compromised in OS.
Resumo:
Gelsolin is a cytoskeletal protein which participates in actin filament dynamics and promotes cell motility and plasticity. Although initially regarded as a tumor suppressor, gelsolin expression in certain tumors correlates with poor prognosis and therapy-resistance. In vitro, gelsolin has anti-apoptotic and pro-migratory functions and is critical for invasion of some types of tumor cells. We found that gelsolin was highly expressed at tumor borders infiltrating into adjacent liver tissues, as examined by immunohistochemistry. Although gelsolin contributes to lamellipodia formation in migrating cells, the mechanisms by which it induces tumor invasion are unclear. Gelsolin's influence on the invasive activity of colorectal cancer cells was investigated using overexpression and small interfering RNA knockdown. We show that gelsolin is required for invasion of colorectal cancer cells through matrigel. Microarray analysis and quantitative PCR indicate that gelsolin overexpression induces the upregulation of invasion-promoting genes in colorectal cancer cells, including the matrix-degrading urokinase-type plasminogen activator (uPA). Conversely, gelsolin knockdown reduces uPA levels, as well as uPA secretion. The enhanced invasiveness of gelsolin-overexpressing cells was attenuated by treatment with function-blocking antibodies to either uPA or its receptor uPAR, indicating that uPA/uPAR activity is crucial for gelsolin-dependent invasion. In summary, our data reveals novel functions of gelsolin in colorectal tumor cell invasion through its modulation of the uPA/uPAR cascade, with potentially important roles in colorectal tumor dissemination to metastatic sites.
Resumo:
Emerging evidence demonstrates that RUNX3 is a tumor suppressor in breast cancer. Inactivation of RUNX3 in mice results in spontaneous mammary gland tumors, and decreased or silenced expression of RUNX3 is frequently found in breast cancer cell lines and human breast cancer samples. However, the underlying mechanism for initiating RUNX3 inactivation in breast cancer remains elusive. Here, we identify prolyl isomerase Pin1, which is often overexpressed in breast cancer, as a key regulator of RUNX3 inactivation. In human breast cancer cell lines and breast cancer samples, expression of Pin1 inversely correlates with the expression of RUNX3. In addition, Pin1 recognizes four phosphorylated Ser/Thr-Pro motifs in RUNX3 via its WW domain. Binding of Pin1 to RUNX3 suppresses the transcriptional activity of RUNX3. Furthermore, Pin1 reduces the cellular levels of RUNX3 in an isomerase activity-dependent manner by inducing the ubiquitination and proteasomal degradation of RUNX3. Knocking down Pin1 enhances the cellular levels and transcriptional activity of RUNX3 by inhibiting the ubiquitination and degradation of RUNX3. Our results identify Pin1 as a new regulator of RUNX3 inactivation in breast cancer.
Resumo:
Understanding the molecular etiology of cancer and increasing the number of drugs and their targets are critical to cancer management. In our attempt to unravel novel breast-cancer associated proteins, we previously conducted protein expression profiling of the MCF10AT model, which comprises a series of isogenic cell lines that mimic different stages of breast cancer progression. NRD1 expression was found to increase during breast cancer progression. Here, we attempted to confirm the relevance of NRD1 in clinical breast cancer and understand the functional role and mechanism of NRD1 in breast cancer cells. Immunohistochemistry data show that NRD1 expression was elevated in ductal carcinoma in situ and invasive ductal carcinomas compared with normal tissues in 30% of the 26 matched cases studied. Examination of NRD1 expression in tissue microarray comprising >100 carcinomas and subsequent correlation with clinical data revealed that NRD1 expression was significantly associated with tumor size, grade, and nodal status (P <0.05). Silencing of NRD1 reduced MCF10CA1h and MDA-MD-231 breast-cancer-cell proliferation and growth. Probing the oncogenic EGF signaling pathways revealed that NRD1 knock down did not affect overall downstream tyrosine phosphorylation cascades including AKT and MAPK activation. Instead, silencing of NRD1 resulted in a reduction of overall cyclin D1 expression, a reduction of EGF-induced increase in cyclin D1 expression and an increase in apoptotic cell population compared with control cells.
Resumo:
Transcription factor RUNX3 is inactivated in a number of malignancies, including breast cancer, and is suggested to function as a tumor suppressor. How RUNX3 functions as a tumor suppressor in breast cancer remains undefined. Here, we show that about 20% of female Runx3(+/-) mice spontaneously developed ductal carcinoma at an average age of 14.5 months. Additionally, RUNX3 inhibits the estrogen-dependent proliferation and transformation potential of ERa-positive MCF-7 breast cancer cells in liquid culture and in soft agar and suppresses the tumorigenicity of MCF-7 cells in severe combined immunodeficiency mice. Furthermore, RUNX3 inhibits ERa-dependent transactivation by reducing the stability of ERa. Consistent with its ability to regulate the levels of ERa, expression of RUNX3 inversely correlates with the expression of ERa in breast cancer cell lines, human breast cancer tissues and Runx3(+/-) mouse mammary tumors. By destabilizing ERa, RUNX3 acts as a novel tumor suppressor in breast cancer.
Resumo:
FKBPL has been implicated in processes associated with cancer, including regulation of tumor growth and angiogenesis with high levels of FKBPL prognosticating for improved patient survival. Understanding how FKBPL levels are controlled within the cell is therefore critical. We have identifed a novel role for RBCK1 as an FKBPL-interacting protein, which regulates FKBPL stability at the post-translational level via ubiquitination. Both RBCK1 and FKBPL are upregulated by 17-b-estradiol and interact within heat shock protein 90 chaperone complexes, together with estrogen receptor-a (ERa). Furthermore, FKBPL and RBCK1 associate with ERa at the promoter of the estrogen responsive gene, pS2, and regulate pS2 levels. MCF-7 clones stably overexpressing RBCK1 were shown to have reduced proliferation and increased levels of FKBPL and p21. Furthermore, these clones were resistant to tamoxifen therapy, suggesting that RBCK1 could be a predictive marker of response to endocrine therapy. RBCK1 knockdown using targeted small interfering RNA resulted in increased proliferation and increased sensitivity to tamoxifen treatment. Moreover, in support of our in vitro data, analysis of mRNA microarray data sets demonstrated that high levels of FKBPL and RBCK1 correlated with increased patient survival, whereas high RBCK1 predicted for a poor response to tamoxifen. Our findings support a role for RBCK1 in the regulation of FKBPL with important implications for estrogen receptor signaling, cell proliferation and response to endocrine therapy.
Resumo:
To determine whether immunocomplexes (ICs) containing advanced glycation end product (AGE)-LDL (AGE-LDL) and oxidized LDL (oxLDL) contribute to the development of retinopathy over a 16-year period in subjects with type 1 diabetes.
Resumo:
Modified lipoproteins induce autoimmune responses including the synthesis of autoantibodies with pro-inflammatory characteristics. Circulating modified lipoprotein autoantibodies combine with circulating antigens and form immune complexes (IC). We now report the results of a study investigating the role of circulating IC containing modified lipoproteins in the progression of carotid intima-media thickness (IMT) in patients enrolled in the Epidemiology of Diabetes Interventions and Complications (EDIC) Trial, a follow-up study of the Diabetes Control and Complications Trial (DCCT). This cohort includes 1229 patients with type 1 diabetes in whom B-mode ultrasonography of internal and common carotid arteries was performed in 1994-1996 and in 1998-2000. Conventional CHD risk factors, antibodies against modified forms of LDL and modified lipoprotein IC were determined in 1050 of these patients from blood collected in 1996-1998. Cholesterol and apolipoprotein B content of IC (surrogate markers of modified ApoB-rich lipoproteins) were significantly higher in patients who showed progression of the internal carotid IMT than in those showing no progression, regression or mild progression. Multivariate linear and logistic regression modeling using conventional and non-conventional risk factors showed that the cholesterol content of IC was a significant positive predictor of internal carotid IMT progression. In conclusion these data demonstrate that increased levels of modified ApoB-rich IC are associated with increased progression of internal carotid IMT in the DCCT/EDIC cohort of type 1 diabetes.
Resumo:
An iris tumor developed in a 37-year-old woman who had had a bronchial carcinoid tumor resected nine years previously. The iris tumor was locally excised with a modified trabeculectomy approach. Histologic studies showed it to be a metastatic carcinoid tumor. Electron microscopy demonstrated typical dark and pale carcinoid cells with neurosecretory granules, basal bodies, and apical microvilli. The cisternae of the granular endoplasmic reticulum were disposed in a series of concentric rings encapsulating a central core of mitochondria. This unusual type of subcellular organization and specialization is probably a reflection of the slow-growing and highly differentiated nature of the iris tumor.
Resumo:
Over 90% of modified LDL in circulation is associated to specific antibodies circulating as part of immune complexes (IC); however, few studies have examined their relationship with cardiovascular disease.