975 resultados para Tropical meteorolog


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high resolution general circulation model has been used to study intense tropical storms. A five-year-long global integration with a spatial resolution of 125 km has been analysed. The geographical and seasonal distribution of tropical storms agrees remarkably well with observations. The structure of individual storms also agrees with observations, but the storms are generally more extensive in coverage and less extreme than the observed ones. A few additional calculations have also been done by a very high resolution limited-area version of the same model, where the boundary conditions successively have been interpolated from the global model. These results are very realistic in many details of the structure of the storms including simulated rain-bands and an eye structure. The global model has also been used in another five-year integration to study the influence of greenhouse warming. The sea surface temperatures have been taken from a transient climate change experiment carried out with a low resolution coupled ocean-atmosphere model. The result is a significant reduction in the number of hurricanes, particularly in the Southern Hemisphere. Main reasons for this can be found in changes in the largescale circulation, i.e. a weakening of the Hadley circulation, and a more intense warming of the upper tropical troposphere. A similar effect can be seen during warm ENSO events, where fewer North Atlantic hurricanes have been reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a description of the 1979–2002 tropical Atlantic (TA) SST variability modes coupled to the anomalous West African (WA) rainfall during the monsoon season. The time-evolving SST patterns, with an impact on WA rainfall variability, are analyzed using a new methodology based on maximum covariance analysis. The enhanced Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset, which includes measures over the ocean, gives a complete picture of the interannual WA rainfall patterns for the Sahel dry period. The leading TA SST pattern, related to the Atlantic El Niño, is coupled to anomalous precipitation over the coast of the Gulf of Guinea, which corresponds to the second WA rainfall principal component. The thermodynamics and dynamics involved in the generation, development, and damping of this mode are studied and compared with previous works. The SST mode starts at the Angola/Benguela region and is caused by alongshore wind anomalies. It then propagates westward via Rossby waves and damps because of latent heat flux anomalies and Kelvin wave eastward propagation from an off-equatorial forcing. The second SST mode includes the Mediterranean and the Atlantic Ocean, showing how the Mediterranean SST anomalies are those that are directly associated with the Sahelian rainfall. The global signature of the TA SST patterns is analyzed, adding new insights about the Pacific– Atlantic link in relation to WA rainfall during this period. Also, this global picture suggests that the Mediterranean SST anomalies are a fingerprint of large-scale forcing. This work updates the results given by other authors, whose studies are based on different datasets dating back to the 1950s, including both the wet and the dry Sahel periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the feasibility of simulating maize yield in a sub‑tropical region of southern Brazil using the general large area model (Glam). A 16‑year time series of daily weather data were used. The model was adjusted and tested as an alternative for simulating maize yield at small and large spatial scales. Simulated and observed grain yields were highly correlated (r above 0.8; p<0.01) at large scales (greater than 100,000 km2), with variable and mostly lower correlations (r from 0.65 to 0.87; p<0.1) at small spatial scales (lower than 10,000 km2). Large area models can contribute to monitoring or forecasting regional patterns of variability in maize production in the region, providing a basis for agricultural decision making, and Glam‑Maize is one of the alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to a substantial weakening of the Atlantic Meridional Overturning Circulation (AMOC)— from a coupled ocean–atmosphere general circulation model experiment—significant changes in the interannual variability are found over the tropical Atlantic, characterized by an increase of variance (by ~150 %) in boreal late spring-early summer and a decrease of variance (by ~60 %) in boreal autumn. This study focuses on understanding physical mechanisms responsible for these changes in interannual variability in the tropical Atlantic. It demonstrates that the increase of variability in spring is a consequence of an increase in the variance of the El Niño-Southern Oscillation, which has a large impact on the tropical Atlantic via anomalous surface heat fluxes. Winter El Niño (La Niña) affects the eastern equatorial Atlantic by decreasing (increasing) cloud cover and surface wind speed which is associated with anomalous downward (upward) short wave radiation and reduced (enhanced) upward latent heat fluxes, creating anomalous positive (negative) sea surface temperature (SST) anomalies over the region from winter to spring. On the other hand, the decrease of SST variance in autumn is due to a deeper mean thermocline which weakens the impact of the thermocline movement on SST variation. The comparison between the model results and observations is not straightforward owing to the influence of model biases and the lack of a major MOC weakening event in the instrumental record. However, it is argued that the basic physical mechanisms found in the model simulations are likely to be robust and therefore have relevance to understanding tropical Atlantic variability in the real world, perhaps with modified seasonality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cases where tropical storms are initiated simultaneously along one latitude are investigated. It is argued that such structure arises as part of a baroclinic wave. A case from February 2008 is examined using European Centre for Medium-Range Forecasts (ECMWF) analyses; the birth of three tropical cyclones in the low-level cyclonic regions to the east of upper-level troughs suggests that the wave was instrumental for initiation. Archived satellite imagery and storm warnings reveal that baroclinic waves over the southern Indian Ocean accompany tropical cyclogenesis twice a season on average, mainly in late summer, when breaking Rossby waves on the subtropical westerly jet are closest to the Intertropical Convergence Zone (ITCZ). Copyright © 2012 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the availability of hemispheric gridded data sets from observations, analysis and global climate models, objective cyclone identification methods were developed and applied to these data sets. Due to the large amount of investigation methods combined with the variety of different datasets, a multitude of results exist, not only for the recent climate period but also for the next century, assuming anthropogenic changed conditions. Different thresholds, different physical quantities, and considerations of different atmospheric vertical levels add to a picture that is difficult to combine into a common view of cyclones, their variability and trends, in the real world and in GCM studies. Thus, this paper will give a comprehensive review of the actual knowledge on climatologies of mid-latitude cyclones for the Northern and Southern Hemisphere for the present climate and for its possible changes under anthropogenic climate conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of the tropical upwelling branch of the stratospheric Brewer–Dobson circulation are examined, with a particular focus on the role of the middle-atmosphere Hadley circulation. Upwelling is examined in terms of both the diabatic circulation and Lagrangian trajectories using a zonally symmetric balance model. The behavior of the wave-driven circulation in the presence of angular momentum redistribution by the Hadley circulation is also considered. The results of the zonally symmetric model are compared with fields from a middle-atmosphere GCM. It is found that the Hadley circulation makes a significant contribution to annual mean tropical upwelling at the upwelling maximum in the vicinity of the stratopause, and can account for most of the annual mean upwelling seen in the GCM. In the mid- to lower stratosphere, the role of the Hadley circulation is much weaker and wave drag appears to be required to explain the observed upwelling, although the Hadley circulation makes a nonnegligible contribution to the annual cycle of the upwelling. Subtropical wave drag can produce annual mean upwelling through a nonlinear mechanism; viscosity is not required. However, the magnitude of the observed upwelling suggests that wave drag must penetrate quite close to the equator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the potential for using Pediastrum (Meyen), a genus of green alga commonly found in palaeoecological studies, as a proxy for lake-level change in tropical South America. The study site, Laguna La Gaiba (LLG) (17°45′S, 57°40′W), is a broad, shallow lake located along the course of the Paraguay River in the Pantanal, a 135,000-km2 tropical wetland located mostly in western Brazil, but extending into eastern Bolivia. Fourteen surface sediment samples were taken from LLG across a range of lake depths (2-5.2 m) and analyzed for Pediastrum. We found seven species, of which P. musteri (Tell et Mataloni), P. argentiniense (Bourr. et Tell), and P. cf. angulosum (Ehrenb.) ex Menegh. were identified as potential indicators of lake level. Results of the modern dataset were applied to 31 fossil Pediastrum assemblages spanning the early Holocene (12.0 kyr BP) to present to infer past lake level changes qualitatively. Early Holocene (12.0-9.8 kyr BP) assemblages do not show a clear signal, though abundance of P. simplex (Meyen) suggests relatively high lake levels. Absence of P. musteri, characteristic of deep, open water, and abundance of macrophyte-associated taxa indicate lake levels were lowest from 9.8 to 3.0 kyr BP. A shift to wetter conditions began at 4.4 kyr BP, indicated by the appearance of P. musteri, though inferred lake levels did not reach modern values until 1.4 kyr BP. The Pediastrum-inferred mid-Holocene lowstand is consistent with lower precipitation, previously inferred using pollen from this site, and is also in agreement with evidence for widespread drought in the South American tropics during the middle Holocene. An inference for steadily increasing lake level from 4.4 kyr BP to present is consistent with diatom-inferred water level rise at Lake Titicaca, and demonstrates coherence with the broad pattern of increasing monsoon strength from the late Holocene until present in tropical South America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a well-dated, high-resolution, ~ 45 kyr lake sediment record reflecting regional temperature and precipitation change in the continental interior of the Southern Hemisphere (SH) tropics of South America. The study site is Laguna La Gaiba (LLG), a large lake (95 km2) hydrologically-linked to the Pantanal, an immense, seasonally-flooded basin and the world's largest tropical wetland (135,000 km2). Lake-level changes at LLG are therefore reflective of regional precipitation. We infer past fluctuations in precipitation at this site through changes in: i) pollen-inferred extent of flood-tolerant forest; ii) relative abundance of terra firme humid tropical forest versus seasonally-dry tropical forest pollen types; and iii) proportions of deep- versus shallow-water diatoms. A probabilistic model, based on plant family and genus climatic optima, was used to generate quantitative estimates of past temperature from the fossil pollen data. Our temperature reconstruction demonstrates rising temperature (by 4 °C) at 19.5 kyr BP, synchronous with the onset of deglacial warming in the central Andes, strengthening the evidence that climatic warming in the SH tropics preceded deglacial warming in the Northern Hemisphere (NH) by at least 5 kyr. We provide unequivocal evidence that the climate at LLG was markedly drier during the last glacial period (45.0–12.2 kyr BP) than during the Holocene, contrasting with SH tropical Andean and Atlantic records that demonstrate a strengthening of the South American summer monsoon during the global Last Glacial Maximum (~ 21 kyr BP), in tune with the ~ 20 kyr precession orbital cycle. Holocene climate conditions occurred as early as 12.8–12.2 kyr BP, when increased precipitation in the Pantanal catchment caused heightened flooding and rising lake levels in LLG. In contrast to this strong geographic variation in LGM precipitation across the continent, expansion of tropical dry forest between 10 and 3 kyr BP at LLG strengthens the body of evidence for widespread early–mid Holocene drought across tropical South America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ongoing controversy in Amazonian palaeoecology is the manner in which Amazonian rainforest communities have responded to environmental change over the last glacial–interglacial cycle. Much of this controversy results from an inability to identify the floristic heterogeneity exhibited by rainforest communities within fossil pollen records. We apply multivariate (Principal Components Analysis) and classification (Unweighted Pair Group with Arithmetic Mean Agglomerative Classification) techniques to floral-biometric, modern pollen trap and lake sediment pollen data situated within different rainforest communities in the tropical lowlands of Amazonian Bolivia. Modern pollen rain analyses from artificial pollen traps show that evergreen terra firme (well-drained), evergreen terra firme liana, evergreen seasonally inundated, and evergreen riparian rainforests may be readily differentiated, floristically and palynologically. Analogue matching techniques, based on Euclidean distance measures, are employed to compare these pollen signatures with surface sediment pollen assemblages from five lakes: Laguna Bella Vista, Laguna Chaplin, and Laguna Huachi situated within the Madeira-Tapajós moist forest ecoregion, and Laguna Isirere and Laguna Loma Suarez, which are situated within forest patches in the Beni savanna ecoregion. The same numerical techniques are used to compare rainforest pollen trap signatures with the fossil pollen record of Laguna Chaplin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used fossil pollen to investigate the response of the eastern Chiquitano seasonally-dry tropical forest (SDTF), lowland Bolivia, to high-amplitude climate change associated with glacial–interglacial cycles. Changes in the structure, composition and diversity of the past vegetation are compared with palaeoclimate data previously reconstructed from the same record, and these results shed light on the biogeographic history of today’s highly disjunct blocks of SDTF across South America. We demonstrate that lower glacial temperatures limited tropical forest in the Chiquitanía region, and suggest that SDTF was absent or restricted at latitudes below 17°S, the proposed location of the majority of the hypothesized ‘Pleistocene dry forest arc’ (PDFA). At 19500 yrs b.p., warming supported the establishment of a floristically-distinct SDTF, which showed little change throughout the glacial–Holocene transition, despite a shift to significantly wetter conditions beginning ca. 12500–12200 yrs b.p. Anadenanthera colubrina, a key SDTF taxon, arrived at 10000 yrs b.p., which coincides with the onset of drought associated with an extended dry season. Lasting until 3000 yrs b.p., Holocene drought caused a floristic shift to more drought-tolerant taxa and a reduction in α-diversity (shown by declining palynological richness), but closed-canopy forest was maintained throughout. In contrast to the PDFA, the modern distribution of SDTF most likely represents the greatest spatial coverage of these forests in southern South America since glacial times. We find that temperature is a key climatic control upon the distribution of lowland South American SDTF over glacial-interglacial timescales, and seasonality of rainfall exerts a strong control on their floristic composition.