992 resultados para Tropical Indian ocean
Resumo:
The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer Globoquadrina dehiscens from the western Pacific including the South China Sea was about 3 Myr earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidence indicates sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of G. dehiscens and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the late Miocene. Planktonic delta18O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of G. dehiscens from the South China Sea region. The late Miocene warm pool became influential and paleobiologically detectable from ~10 Ma, but the modern warm pool did not appear until about 4 Ma, in the middle Pliocene.
Resumo:
Early to middle Miocene radiolarian assemblages were examined at three sites (747, 748, and 751) that were cored during Ocean Drilling Program Leg 120 south of the present polar frontal zone on the Kerguelen Plateau (Indian sector of the Southern Ocean). The radiolarian biostratigraphic study relies on a radiolarian zonation recently developed on Leg 113 materials in the Atlantic sector of the Southern Ocean, which is correlated with the geomagnetic time scale. New radiolarian biostratigraphic data also considering the established geomagnetic polarity record were used to improve and emend the age calibration of some lower Miocene radiolarian zones and a redefined middle Miocene radiolarian zonation is proposed. Based on these results, a revised age assignment of the lower Miocene sections drilled at Leg 113 Sites 689 and 690 is proposed.