986 resultados para Trophic state
Resumo:
Using a dislocation simulation approach, the basic equation for a crack perpendicular to a bimaterial interface is formulated in this paper. A novel expansion method is proposed for solving the problem. The complete solution for the problem, including the T stress ahead of the crack tip and the stress intensity factors are presented. The stress field characteristics are analyzed in detail. It is found that ahead of the crack tip and near the interface the normal stress, perpendicular to the crack plane, sigma(x), is characterized by the K fields and the normal stress sigma(y) is dominated by the K field plus T stress in the region of 0 < r/b < 0.4 for b/a(0) less than or equal to 0.1, where b is the distance from the crack tip to the interface.
Resumo:
Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.
Resumo:
There are seven strong earthquakes with M >= 6.5 that occurred in southern California during the period from 1980 to 2005. In this paper, these earthquakes were studied by the LURR (Load/Unload Response Ratio) method and the State Vector method to detect if there are anomalies before them. The results show that LURR anomalies appeared before 6 earthquakes out of 7 and State Vector anomalies appeared before all 7 earthquakes. For the LURR method, the interval between maximum LURR value and the forthcoming earthquake is 1 to 19 months, and the dominant mean interval is about 10.7 months. For the State Vector method, the interval between the maximum modulus of increment State Vector and the forthcoming earthquake is from 3 to 27 months, but the dominant mean interval between the occurrence time of the maximum State Vector anomaly and the forthcoming earthquake is about 4.7 months. The results also show that the minimum valid space window scale for the LURR and the State Vector is a circle with a radius of 100 km and a square of 3 degrees 3 degrees, respectively. These results imply that the State Vector method is more effective for short-term earthquake prediction than the LURR method, however the LURR method is more effective for location prediction than the State Vector method.
Resumo:
Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.
Resumo:
Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.
An overview of sequential Monte Carlo methods for parameter estimation in general state-space models
Resumo:
Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, are numerical techniques based on Importance Sampling for solving the optimal state estimation problem. The task of calibrating the state-space model is an important problem frequently faced by practitioners and the observed data may be used to estimate the parameters of the model. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed for this task accompanied with a discussion of their advantages and limitations.
Resumo:
Sequential Monte Carlo (SMC) methods are popular computational tools for Bayesian inference in non-linear non-Gaussian state-space models. For this class of models, we propose SMC algorithms to compute the score vector and observed information matrix recursively in time. We propose two different SMC implementations, one with computational complexity $\mathcal{O}(N)$ and the other with complexity $\mathcal{O}(N^{2})$ where $N$ is the number of importance sampling draws. Although cheaper, the performance of the $\mathcal{O}(N)$ method degrades quickly in time as it inherently relies on the SMC approximation of a sequence of probability distributions whose dimension is increasing linearly with time. In particular, even under strong \textit{mixing} assumptions, the variance of the estimates computed with the $\mathcal{O}(N)$ method increases at least quadratically in time. The $\mathcal{O}(N^{2})$ is a non-standard SMC implementation that does not suffer from this rapid degrade. We then show how both methods can be used to perform batch and recursive parameter estimation.