998 resultados para Transient Behaviour
Resumo:
Considered as one of the most available radionuclide in soileplant system, 36Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of 36Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of 36Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation.
Resumo:
A number of transient climate runs simulating the last 120kyr have been carried out using FAMOUS, a fast atmosphere-ocean general circulation model (AOGCM). This is the first time such experiments have been done with a full AOGCM, providing a three-dimensional simulation of both atmosphere and ocean over this period. Our simulation thus includes internally generated temporal variability over periods from days to millennia, and physical, detailed representations of important processes such as clouds and precipitation. Although the model is fast, computational restrictions mean that the rate of change of the forcings has been increased by a factor of 10, making each experiment 12kyr long. Atmospheric greenhouse gases (GHGs), northern hemisphere ice sheets and variations in solar radiation arising from changes in the Earth's orbit are treated as forcing factors, and are applied either separately or combined in different experiments. The long-term temperature changes on Antarctica match well with reconstructions derived from ice-core data, as does variability on timescales longer than 10 kyr. Last Glacial Maximum (LGM) cooling on Greenland is reasonably well simulated, although our simulations, which lack ice-sheet meltwater forcing, do not reproduce the abrupt, millennial scale climate shifts seen in northern hemisphere climate proxies or their slower southern hemisphere counterparts. The spatial pattern of sea surface cooling at the LGM matches proxy reconstructions reasonably well. There is significant anti-correlated variability in the strengths of the Atlantic Meridional Overturning Circulation (AMOC) and the Antarctic Circumpolar Current (ACC) on timescales greater than 10kyr in our experiments. We find that GHG forcing weakens the AMOC and strengthens the ACC, whilst the presence of northern hemisphere ice-sheets strengthens the AMOC and weakens the ACC. The structure of the AMOC at the LGM is found to be sensitive to the details of the ice-sheet reconstruction used. The precessional component of the orbital forcing induces ~20kyr oscillations in the AMOC and ACC, whose amplitude is mediated by changes in the eccentricity of the Earth's orbit. These forcing influences combine, to first order, in a linear fashion to produce the mean climate and ocean variability seen in the run with all forcings.
Resumo:
Interpenetrating polymeric networks based on sodium alginate and poly(N-isopropylacrylamide) (PNIPAAm) covalently crosslinked with N,N′-methylenebisacrylamide have been investigated using rheology, thermogravimetry, differential scanning calorimetry, X-ray diffraction measurements and scanning electron microscopy (SEM). An improved elastic response of the samples with a higher PNIPAAm content and increased amount of crosslinking agent was found. The temperature-responsive behaviour of the hydrogel samples was evidenced by viscoelastic measurements performed at various temperatures. It is shown that the properties of these gels can be tuned according to composition, amount of crosslinking agent and temperature changes. X-ray scattering analysis revealed that the hydrophobic groups are locally segregated even in the swollen state whilst cryo-SEM showed the highly heterogeneous nature of the gels.
Resumo:
A comparison is made of the development of global orientation during shearing of lyotropic solutions of hydroxypropylcellulose with that observed for the thermotropic phase of hydroxypropylcellulose. At shear rates the behaviour of the two systems is similar, both during steady-state shear, and in terms of relaxation following cessation of shear flow. At low shear rates, the levels of orientation observed for the thermotropic system are substantially greater than observed for the lyotropic solutions. The relationship of these differences to variations in molecular parameters, viscous stress and to director tumbling is discussed.
Resumo:
Nematic monodomain liquid crystalline elastomers have been prepared through in situ cross-linking of an acrylate based side-chain liquid crystalline polymer in a magnetic field. At the nematic–isotropic transition, the sample is found to undergo an anisotropic shape change. There is found to be an increase in dimensions perpendicular — and a decrease parallel — to the director, this is consistent with alignment of the polymer backbone parallel to the direction of mesogen alignment in the nematic state. From a quantitative investigation of this behaviour, we estimate the level of backbone anisotropy for the elastomer. As second measure of the backbone anisotropy, the monodomain sample was physically extended. We have investigated, in particular, the situation where a monodomain sample is deformed with the angle between the director and the extension direction approaching 90°. The behaviour on extension of these acrylate samples is related to alternative theoretical interpretations and the backbone anisotropy determined. Comparison of the chain anisotropy derived from these two approaches and the value obtained from previous small-angle neutron scattering measurements on deuterium labelled mixtures of the same polymer shows that some level of chain anisotropy is retained in the isotropic or more strictly weakly paranematic state of the elastomer. The origin and implications of this behaviour are discussed.
Resumo:
The plethora, and mass take up, of digital communication tech- nologies has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the ex- istence or otherwise of certain infinite products and series involving age dependent model parameters. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.
Resumo:
To fully appreciate the environmental impact of an office building, the transport-related carbon dioxide (CO2) emissions resulting from its location should be considered in addition to the emissions that result from the operation of the building itself. Travel-related CO2 emissions are a function of three criteria, two of which are influenced by physical location and one of which is a function of business practice. The two spatial criteria are, first, the location of the office relative to the location of the workforce, the market, complementary business activities (and the agglomeration benefits this offers) and, second, the availability and cost of transport modes. The business criterion is the need for, and therefore frequency of, visits and this, in turn, depends on the requirement for a physically present workforce and face-to-face contact with clients. This paper examines the commuting-related CO2 emissions that result from city centre and out-of-town office locations. Using 2001 Census Special Workplace Statistics which record people’s residence, usual workplace and mode of transport between them, distance travelled and mode of travel were calculated for a sample of city centre and out-of-town office locations. The results reveal the extent of the difference between transport-related CO2 emitted by commuters to out-of-town and city centre locations. The implications that these findings have for monitoring the environmental performance of offices are discussed.
Resumo:
Linear models of market performance may be misspecified if the market is subdivided into distinct regimes exhibiting different behaviour. Price movements in the US Real Estate Investment Trusts and UK Property Companies Markets are explored using a Threshold Autoregressive (TAR) model with regimes defined by the real rate of interest. In both US and UK markets, distinctive behaviour emerges, with the TAR model offering better predictive power than a more conventional linear autoregressive model. The research points to the possibility of developing trading rules to exploit the systematically different behaviour across regimes.
Resumo:
The homologous series of side chain liquid crystal polymers, the poly[x-(4-methoxyazobenzene- 40-oxy)alkyl methacrylate]s, has been prepared in which the length of the flexible alkyl spacer has been varied from 3 to 11 methylene units. All the polymers exhibit liquid crystalline behaviour. The propyl and butyl members show exclusively nematic behaviour. The pentyl, hexyl, octyl and decyl members show a nematic and a smectic A phase while the heptyl, nonyl and undecyl homologues exhibit only a smectic A phase. The smectic A phase has been studied using X-ray diffraction and assigned as a smectic A1 phase in which the side chains are fully overlapped and the backbones are confined to lie between the smectic layers. For the nonyl member an incommensurate smectic phase is observed. The dependence of the transition temperatures on the length of the flexible spacer is understood in terms of the average shapes of the side chains.
Resumo:
The presence of resident Langerhans cells (LCs) in the epidermis makes the skin an attractive target for DNA vaccination. However, reliable animal models for cutaneous vaccination studies are limited. We demonstrate an ex vivo human skin model for cutaneous DNA vaccination which can potentially bridge the gap between pre-clinical in vivo animal models and clinical studies. Cutaneous transgene expression was utilised to demonstrate epidermal tissue viability in culture. LC response to the culture environment was monitored by immunohistochemistry. Full-thickness and split-thickness skin remained genetically viable in culture for at least 72 h in both phosphate-buffered saline (PBS) and full organ culture medium (OCM). The epidermis of explants cultured in OCM remained morphologically intact throughout the culture duration. LCs in full-thickness skin exhibited a delayed response (reduction in cell number and increase in cell size) to the culture conditions compared with split-thickness skin, whose response was immediate. In conclusion, excised human skin can be cultured for a minimum of 72 h for analysis of gene expression and immune cell activation. However, the use of split-thickness skin for vaccine formulation studies may not be appropriate because of the nature of the activation. Full-thickness skin explants are a more suitable model to assess cutaneous vaccination ex vivo.