942 resultados para Transferência de calor na madeira
Resumo:
The objective of the present work was to evaluate Pinus’ glued laminated timber (glulam) beams and steel reinforced glulam beams, using PU mono-component adhesive in lamination step and epoxy adhesive to bond steel bars. The mechanical performance was verified through bending test, and the adopted method based on homogenized section, to considerate the differences between wood and steel mechanical properties. The homogenization section method proved itself effective in obtaining the stiffness of the parts in MLCA. The stiffness of reinforced beams increased 91% in comparison with glulam beams, differing only 5.5 % from value of stiffness calculated
Resumo:
The growth of urban population associated with the shortage of supply of public infrastructure such as hospitals, kindergartens, schools, among others, has reinforced the need to develop alternative methods that simplify the construction processes and allows for a reduction in these costs works. The conventional processes have increasingly been shown ineffective to solve the problem of demand for different types of urban and rural buildings. Given this fact, industrial construction processes can gain space and have proven to be highly interesting to solve the above problems, in particular, considering the cost-effective and time. Therefore, this study aimed to determine the influence of moisture on the strength of metal plate connections connectors (printed plate with teeth). For the sizing of the links between structural lumber using metal connectors with teeth prints; controlled process variables (drying of the wood and the different moisture contents), and finally found results and compare them with different literatures order to obtain a qualitative efficiency of the process. Some specimens had very low expectations, can be explained by the presence of bone marrow, and pre-existing cracks. Thus, the results were discarded for further analysis and more accurate results
Resumo:
Classical statistical techniques which necessarily assume that all sampling units are random and independent were always used in the timber industry. Geostatistics considers that certain phenomena are characterized by spatial dependence: values of sampling units closer to each other tend to be more similar than values of sampling units farther away. This study aimed to characterize the spatial variability of the finishing (dyer) in the upper and lower surfaces of four edge glued panels by using geostatistical methods using geoR. Semivariograms were constructed for the analysis of spatial dependence. The spherical mathematical model was the best fit to the semivariograms generated, and was done the interpolation of the data (kriging) in samples where the distribution of dyer presents spatial dependence. In the bottom surfaces of two panels where the spatial dependence was detected geostatistical methods characterized a very large spatial variability due to the heterogeneous application of the finishing
Resumo:
The need to reduce environmental damage and add value to waste causes more and more new alternatives appear to unite these two points. One of the main ways to achieve this in timber industries and the use of waste for making panels. This work was aimed at studying the influence of particle size and density in Eucalyptus mechanical compressive strength of cement composite wood. For this study was performed production and physico-mechanical characterization of specimens, using portland cement, water and waste eucalyptus. The methodology consists of a statistical study of the results obtained by calculating the density and axial compression tests and a subsequent comparison of these results with other studies. The results showed that there are significant differences in density and compressive strength when using different particle sizes the particles of eucalyptus. In general, the smaller the particle size, the lower the compression strength and the greater the density when the samples are produced with the same trait
Resumo:
This paper studies the frame deformations on a formula SAE vehicle in steady-state cornering and its influence on the lateral load transfers and, consequently, on the tires normal loads due to the applied lateral load. For a vehicle with a perfect rigid frame, the vehicle mass, the position of the center of gravity and the suspensions are the only factors responsible for the load distribution between the tires. When the frame deformations are no longer negligible, the frame deformations affect the loaddistribution between the tires. The frame flexibility turns it able to behave as an additional set of springs to the suspension system, thus changing the behavior of the set. This paper describes howit happens and suggests ways to minimize this phenomenon
Energia, suas formas e transformações: uma abordagem contextualizada por meio de material não-formal
Resumo:
Energy is a physical quantity very present in physics. Although extremely useful, its concept is very abstract for most students in high school and college. Identify the presence and form of energy in a given phenomenon is not simple, as there is immediate understanding on the transfer and transformation. This work emphasizes the study of mechanical energy in its different forms as well as the thermal energy, considering the possible transformations between them. To this end, use is mad of toys, exploring its potential as an alternative material to be use in supplement classroom teaching in primary and secondary levels. The proposed use of ludic pedagogy takes into account the author’s experience as an intern project Toy Scientific Department of Physics and its role as mediator in the workshops offered by the project to school at these levels
Resumo:
The need to use waste from wood processing industry grows due to environmental demands imposed by laws, so like the need to introduce more competitive products in the market (it means better quality and acceptable cost) who must submit by the rational use of raw material, usually turning waste to sub products, what adds higher value for that. To this research, specific case from Ribon Company, located on Camaçari, Bahia-Brazil, has been studied. It is a treated wood producer. Bulk of monthly wood logs there is 70 m3. Its yield is 71,43%, where bulk of generated waste is monthly 20m3. As an exploitation way from generated waste, it has been suggested some options like: erosion protection to specific areas, a wildlife shelter as an henhouse etc, recreational articles, coal, linings, treadmills. However this research will give focus to the furniture design made of waste. As a conclusion, there is very much need to assign new utilizations to that sub used materials, since there is significant amount to increase company’s productive yield
Resumo:
Charcoal is obtained from carbonization, much used in the steel industry for ore reduction, using as raw material the Eucalyptus. The present study aims to verify whether the main Eucalyptus saligna genetically modified produce quality charcoal with only 3.5 years old. The study was done with material collected from three trees, divided into five discs removed at 0, 25 , 50 , 75 and 100 % of the commercial height of the tree. The procedures adopted were based on standards published by ABNT. The results were satisfactory for the parameters: basic wood density with an average of 0.39 ± 0.0082 g / cm ³; volatile materials from coal with an average of 19.35 ± 3.27 %, fixed carbon content of the coal with an average of 75.62 ± 3.40 % and gross calorific value of coal with an average of 4694.43 cal / g, and unsatisfactory results for ash content averaging 5.03 ± 0.23 when compared to the values found in the literature. It was concluded that the studied wood is able to produce charcoal, but the factors of production should be better observed, such as heating time which exerted direct influence on the determination of ash content
Resumo:
In the industries of wood processing (sawmills), where timber is sawn in equipment such as band saws, circular saws, trowel, thicknessers, among others, that mechanically transform this resource and use of electric motors, which are not unusually poorly scaled working or overloaded, often a factor that is not found in these industries and has fundamental importance in the production process is energy efficiency that is achieved by both technological innovation and through all the practices and policies that aim to lower energy consumption, lowering energy costs and increasing the amount of energy offered no change in generation. For both during the design of an electrical installation, both overall and in various sectors of the installation, investigations are necessary, considerations and uses of variables and factors that put into practice the theme of energy efficiency. Therefore, in this paper, these factors were calculated and analyzed for a wood processing industry (sawmill) in the municipality of Taquarivaí - SP, namely: active power, power factor, demand factor and load factor. Where they were small in relation to the literature, these events that occur when devices are connected at the same time and due to the conditions of processing the wood, where the engines have large variations in electricity consumption during the unfolding of the same, due to efforts with the load and idle moments between each machining operation in the equipment
Resumo:
Bamboo has been studied because of its peculiar mechanical properties and numerous possibilities of use, besides being a fast-growing grass and short cutting cycle. This study aimed to analyze the mechanical characteristics of wood-bamboo composite material, where the samples were developed from the combination of layers of bamboo as a structural reinforcement in solid pieces of pine and EGP panel parts. The species of wood used was Pinus taeda, and the bamboo species Guadua angustifolia and Dendrocalamus giganteus. All work was conducted at the Universidade Estadual Paulista - UNESP in the laboratory of Physical and Mechanical Properties of Wood. Tests including the density and tension parallel to grain of the bamboo species used and the static bending of composites in order to use this in the furniture industry. For the tests have been used as a basis the requirements of the normative document NBR 7190/97. The values obtained in the tests showed a significant increase in strength and stiffness compared to unreinforced parts, where there was an increase in MOE and MOR in static bending in all specimens used in evidence. The results showed the possibility of reducing sections in furniture components and the possibility of improving the mechanical properties of parts with defects found in wood of Pinus Itapeva region of São Paulo
Resumo:
O presente trabalho consiste em demonstrar valores referentes ao conforto ambiental de dois modelos construtivos, sendo o primeiro um edifício já executado e o outro em fase de implantação, ambos no Campus Experimental de Itapeva, aplicando alguns conceitos em habitação mais sustentáveis de madeira na região de Itapeva, estado de São Paulo, Brasil. A edificação construída sedia duas salas de aula a partir da tipologia construtiva wood frame, constituída basicamente de paredes autoportantes compostas de ossatura de madeira tratada de pinus.sp, chapas estruturais em OSB, manta de isolamento térmico/acústico e fechamento interno e externo, respectivamente em gesso e sidding (lambris de madeira). A habitação em fase de início de implantação foi idealizada a partir da tipologia construtiva log-home, e atenderá a necessidade de espaço físico para abrigar o Centro Acadêmico e a empresa-júnior “PROMAD”, ambos do curso de Engenharia Industrial Madeireira do Campus Experimental da UNESP/Itapeva. Esta construção foi elaborada a partir de técnicas de baixo impacto ambiental, levando em consideração os resultados de análise térmica obtidos na edificação anterior. Em ambos modelos construtivos foram empregados recursos renováveis abundantes na região, como a madeira de reflorestamento de Pinus e de Eucalipto. Foi acrescentado ainda ao segundo modelo a utilização de resíduos industriais lignocelulósicos, como rolete de laminação e outros materiais locais disponíveis. A metodologia básica empregada para a obtenção de dados sobre o conforto térmico em relação as edificações foi, para o primeiro caso, a coleta de dados de temperatura e umidade utilizando um termo-higrômetro, a sistematização e análise de dados reais obtidos no interior da edificação. No segundo caso, o dimensionamento do conforto térmico... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
As florestas tropicais são naturalmente amplos reservatórios de carbono devido à alta produtividade e extensão (Malhi et al. 2000). Em termos do ciclo do carbono, o papel das florestas tropicais como fonte ou sumidouro de CO2 tem sido amplamente debatido (Saleska et al. 2003), portanto, estudos sobre a capacidade de estoque de carbono destes ecossistemas são particularmente relevantes para compreendermos a dinâmica do CO2 para o atual ciclo global do carbono e para compreender o potencial desses ecossistemas atuarem como sumidouro ou fontes de CO2. O objetivo do presente estudo foi verificar se a biomassa de madeira morta acima do solo varia com a altitude (5-50m e 50-500m) em uma Floresta Ombrófila Densa (Mata Atlântica) para entender como o estoque de carbono dessa necromassa varia entre os locais, estoque esse que é matéria prima para liberação de CO2 para atmosfera pelo processo de decomposição. Para estimar a necromassa em pé foram consideradas todas as árvores mortas em pé com diâmetro na altura do peito (DAP = 1,3 metros de altura) maior que 4,8 cm (ou PAP > ou igual a 15 cm), de acordo com protocolo proposto pelo RAINFOR (Rede Amazônica de Inventários Florestais). Todas as árvores mortas em pé foram quantificadas e classificadas a partir da verificação do estado de decomposição da casca de cada indivíduo em quatro classes de decomposição, que possuem diferentes densidades de madeira relacionadas ao estágio de decomposição. A biomassa de madeira morta acima do solo variou com a altitude (figura 2). Essa variação foi de 1,14 Mg ha-1 (parcela B, Terras Baixas) a 7,57 Mg ha-1 (parcela J, F.O.D. Submontana). Em relação às fitofisionomias, houve uma variação de 8,40 Mg ha-1 (Terras Baixas) a 18,38 Mg ha-1 (F.O.D. Submontana)
Resumo:
With the growing world energy demand mainly from developing countries like Brazil, Russia, India and China, the search for efficient sources of energy becomes a challenge for the coming years. Among the most widely used alternative sources, biomass is the one that grows in a more pronounced way. This study will assess the real possibility of having it as a heat source in an Organic Rankine Cycle, which employ heat transfer fluids as working fluids instead of water. From a regional data collection in agricultural production and their potential rice production and the resulting husk was defined as more appropriate. The availability of husks together with an amount of eucalyptus wood, provided by a company in the region on a monthly basis, were analyzed, and the low participation of the wood was discarded by the thermal contribution of little significance. Based on this, it was established the calorific value of fuel for thermodynamic calculations and the cycle to be used. It was then carried out the choice of working fluid from the literature and their availability in the library of software used for the simulations, the Engineering Equation Solver - ESS. The fluid most appropriate for the burning of biomass, Octamethyltrisiloxane (OMTS), was not included in the software and so the R227ea and R134a were selected. After the initial parameters modeling definition, as condensing temperature, efficiency and live steam conditions, the simulations were performed, and only the R227ea remained within the feasible thermodynamic and technological ranges. With this fluid the turbine power output was 265.7 [kW] for a scenario of 24 hours/day burning, 800.3 [kW] to biomass burning for 8 hours/day and 2134 [kW] for burning only 3 hours/day. The thermal efficiency of the cycle remained in the range of 6%, and for plants operating with the most... (Complete Abstract click eletronic access below)
Resumo:
The search for a more aware use of available raw materials has led to a need to create more sustainable products. The use of natural fibers to reinforce cement, for instance, has been widely studied in the past decades because of the possibility that they can improve material properties such as thermal resistance and to compression, besides conferring a decrease in their total weight. This present study aimed at to conduct preliminary studies on the thermal resistance of the composite cement - Cellulose Pulp, using waste from the pulp and paper industry. Through experiments, it was found that the composite manufactured using the ratio 30 % Portland cement and 70 % pulp, showed satisfactory results regarding its thermal resistance, so it could be considered as a potential thermal insulation material, for use in constructions
Resumo:
Pós-graduação em Engenharia Civil - FEIS