993 resultados para Transcription Elongation, Genetic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ralstonia eutropha JMP134 possesses two sets of similar genes for degradation of chloroaromatic compounds, tfdCDEFB (in short: tfdI cluster) and tfdDII CII EII FII BII (tfdII cluster). The significance of two sets of tfd genes for the organism has long been elusive. Here, each of the tfd genes in the two clusters on the original plasmid pJP4 was replaced by double recombination with a gene fragment in which a kanamycin resistance gene was inserted into the respective tfd gene's reading frame. The insertion mutants were all tested for growth on 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), and 3-chlorobenzoate (3-CBA). None of the tfdDII CII EII FII BII genes appeared to be essential for growth on 2,4-D or on 3-CBA. Mutations in tfdC, tfdD and tfdF also did not abolish but only retarded growth on 2,4-D, indicating that they were redundant to some extent as well. Of all tfd genes tested, only tfdE and tfdB were absolutely essential, and interruption of those two reading frames abolished growth on 2,4-D, 3-CBA ( tfdE only), and MCPA completely. Interestingly, strains with insertion mutations in the tfdI cluster and those in tfdDII, tfdCII, tfdEII and tfdBII were severely effected in their growth on MCPA, compared to the wild-type. This indicated that not only the tfdI cluster but also the tfdII cluster has an essential function for R. eutropha during growth on MCPA. In contrast, insertion mutation of tfdDII resulted in better growth of R. eutropha JMP134 on 3-CBA, which is most likely due to the prevention of toxic metabolite production in the absence of TfdDII activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene encoding the cAMP-responsive transcription factor CREB consists of multiple small exons some of which undergo alternative RNA splicing. We describe the finding of a novel transcript of the CREB gene expressed at high levels in the germ cells of the rat testis. The transcript contains an alternatively spliced exon inserted within the sequence encoding the transcriptional transactivation domain of CREB and this exon contains multiple in-frame stop codons. Furthermore, the exon is conserved in both rat and human genes (75% nucleotide identity). Although the function(s) of this RNA or the truncated CREB protein predicted to result from the translation of this unusual transcript is unknown, the high level of expression in the testicular germ cells and remarkable conservation of sequences in rat and human suggests that it may have a unique biological function in these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to determine whether tumor location proximal or distal to the splenic flexure is associated with distinct molecular patterns and can predict clinical outcome in a homogeneous group of patients with Dukes B (T3-T4, N0, M0) colorectal cancer. It has been hypothesized that proximal and distal colorectal cancer may arise through different pathogenetic mechanisms. Although p53 and Ki-ras gene mutations occur frequently in distal tumors, another form of genomic instability associated with defective DNA mismatch repair has been predominantly identified in the proximal colon. To date, however, the clinical usefulness of these molecular characteristics remains unproven. METHODS: A total of 126 patients with a lymph node-negative sporadic colon or rectum adenocarcinoma were prospectively assessed with the endpoint of death by cancer. No patient received either radiotherapy or chemotherapy. p53 protein was studied by immunohistochemistry using DO-7 monoclonal antibody, and p53 and Ki-ras gene mutations were detected by single strand conformation polymorphism assay. RESULTS: During a mean follow-up of 67 months, the overall five-year survival was 70 percent. Nuclear p53 staining was found in 57 tumors (47 percent), and was more frequent in distal than in proximal tumors (55 vs. 21 percent; chi-squared test, P < 0.001). For the whole group, p53 protein expression correlated with poor survival in univariate and multivariate analysis (log-rank test, P = 0.01; hazard ratio = 2.16; 95 percent confidence interval = 1.12-4.11, P = 0.02). Distal colon tumors and rectal tumors exhibited similar molecular patterns and showed no difference in clinical outcome. In comparison with distal colorectal cancer, proximal tumors were found to be statistically significantly different on the following factors: mucinous content (P = 0.008), degree of histologic differentiation (P = 0.012), p53 protein expression, and gene mutation (P = 0.001 and 0.01 respectively). Finally, patients with proximal tumors had a marginally better survival than those with distal colon or rectal cancers (log-rank test, P = 0.045). CONCLUSION: In this series of Dukes B colorectal cancers, p53 protein expression was an independent factor for survival, which also correlated with tumor location. Eighty-six percent of p53-positive tumors were located in the distal colon and rectum. Distal colon and rectum tumors had similar molecular and clinical characteristics. In contrast, proximal neoplasms seem to represent a distinct entity, with specific histopathologic characteristics, molecular patterns, and clinical outcome. Location of the neoplasm in reference to the splenic flexure should be considered before group stratification in future trials of adjuvant chemotherapy in patients with Dukes B tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY : The coevolution between two intimately associated organisms, like host and parasite, is a widely investigated theme in evolutionary biology. Recently, the use of genetic data in the study of host-parasite systems evidences that the genetic information from some parasites can complement genetic data from their hosts and thus may help to better understand their host's evolutionary history. Phylogenetic and population genetic aspects of bat parasites have been poorly investigated. Spinturnicid mites are highly specialized ectoparasites, exclusively associated with bats and therefore represent an ideal model to extant our knowledge on bat and parasite biology and on their coevolutionary history. In this thesis, I developed several molecular markers (mitochondrial DNA) to compare the genetic patterns of Spinturnix mites with their bat hosts at different levels. The molecular co-phylogeny between Spinturnix sp. and their bat hosts suggests a partial cospeciation and the occurrence of failure to speciate events and multiple host switches. Thus, Spinturnix mites do not exactly mirror the phylogenetic pattern of their hosts, despite their intimate association. Similar roosting habits of the hosts seem to promote host switches between different species, as far as ecological conditions are favourable. The phylogeographic study of the Maghrebian bat M. punicus in the Mediterranean area confirms the presence of M. punicus in North Africa, Corsica and Sardinia and highlights that islands and mainland are genetically highly divergent. The comparison between the parasitic mite S. myoti and the Maghrebian bat suggests that the phylogeographic pattern of the mite is moulded by its host, with open water as main barrier for host and parasite dispersal. Moreover, the unique presence of a European S. myoti lineage on M. punicus from Corsica strongly suggests the former presence of mouse-eared bats (M. myotis and/or M. blythii) in Corsica. By highlighting the probable presence of a nowadays locally extinct host species, S. myoti may represent a good proxy for inferring complex evolutionary history of bat hosts. Finally, population genetic surveys of S. myoti and S. bechsteinii suggest that these mites benefit from close contacts between individuals during the mating season and/or hibernation to disperse among remote colonies. The contrasted genetic patterns of these two distinct bat-mite systems evidence that bat social structure is a determinant factor of the genetic structure of mite populations. Altogether, this PhD thesis demonstrates the usefulness of parasites to gather information about their bat hosts. In addition, my results illustrate how different ecological and biological characteristics of bat species allow the emergence of a surprising diversity in the genetic patterns of the parasites, which may contribute to the diversification and speciation of parasites. RESUME : La co-évolution entre deux organismes intimement liés, comme un parasite et son hôte, fait partie des questions largement étudiées en biologie évolutive. Récemment, l'utilisation de données génétique dans l'étude des interactions hôte-parasite a montré que l'information génétique de certains parasites peut compléter les données génétiques de l'hôte et ainsi peut éclairer l'histoire évolutive de leur hôte. Très peu études ont étudié les interactions entre les chauves-souris et leurs parasites d'un point de vue moléculaire. Les acariens du genre Spinturnix sont des ectoparasites très spécialisés exclusivement associés aux chauves-souris. Ils représentent donc un model idéal pour élargir nos connaissances tant sur l'écologie des parasites de chauves-souris que sur leur coévolution. Durant cette thèse, plusieurs marqueurs moléculaires (ADN mitochondrial) ont été développés pour ainsi comparer la distribution de la variation génétique des parasites du genre Spinturnix avec celle de leurs hôtes, et ceci à différents niveaux. Tout d'abord, la co-phylogénie moléculaire entre les espèces de Spinturnix et les leurs hôtes révèle une co-spéciation partielle ainsi que la présence d'événement de non spéciation et de transferts horizontaux. Ces parasites ne reflètent donc pas entièrement l'histoire évolutive de leurs hôtes, malgré leurs intimes associations. La cohabitation de plusieurs espèces de chauves-souris dans un même gîte permet aux parasites un transfert entre différentes espèces, atténuant ainsi leur degré de co-spéciation. Deuxièmement, l'étude phylogéographique du marin du Maghreb dans le bassin Méditerranéen confirme sa présence en Afrique du Nord, en Corse et en Sardaigne. La comparaison avec un de ses parasites S. myoti suggère que la répartition génétique de S. myoti est façonnée par celle de leurs hôtes, avec les étendues d'eau comme barrière principale tant à la dispersion de l'hôte que de son parasite. De plus, la présence unique d'une lignée européenne de ces parasites sur des marins du Maghreb de Corse suggère fortement la présence du grand ou petit marin en Corse dans le passé. En reflétant la présence potentielle à un endroit donné d'une espèce de chauve-souris actuellement disparue, S. myoti peut représenter une bonne alternative pour comprendre l'histoire évolutive complexe des chauves-souris. Finalement, l'étude des structures génétiques des populations des parasites S. myoti et S. bechsteinii suggère que les contacts corporels entre chauves-souris durant la saison de reproduction ou l'hibernation peuvent permettre la dispersion des parasites entre des colonies éloignées géographiquement. La différence de structure génétique entre ces deux associations particulières montre que la structure génétique des populations de parasites dépend fortement des traits d'histoire de vie de son hôte. Dans l'ensemble, cette thèse démontre l'importance des parasites pour amener des informations sur leurs hôtes, les chauves-souris. Elle illustre aussi comment les différences écologique et biologique des différentes espèces de chauves-souris peuvent amener une étonnante diversité de structure génétique au sein de populations de parasites, ce qui peut peut-être contribuer à la diversification et à la spéciation des parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal degeneration characterized by multiple glistening intraretinal dots scattered over the fundus, degeneration of the retina, and sclerosis of the choroidal vessels, ultimately resulting in progressive night blindness and constriction of the visual field. Although BCD has been associated with abnormalities in fatty-acid metabolism and absence of fatty-acid binding by two cytosolic proteins, the genetic basis of BCD is unknown. We report linkage of the BCD locus to D4S426 (maximum LOD score [Z(max)] 4.81; recombination fraction [straight theta] 0), D4S2688 (Zmax=3.97; straight theta=0), and D4S2299 (Zmax=5.31; straight theta=0), on chromosome 4q35-4qtel. Multipoint analysis confirmed linkage to the region telomeric of D4S1652 with a Z(max) of 5.3 located 4 cM telomeric of marker D4S2930.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: The Peroxisome Proliferator-Activated Receptor (PPAR) alpha belongs to the superfamily of Nuclear Receptors and plays an important role in numerous cellular processes, including lipid metabolism. It is known that PPARalpha also has an anti-inflammatory effect, which is mainly achieved by down-regulating pro-inflammatory genes. The objective of this study was to further characterize the role of PPARalpha in inflammatory gene regulation in liver. RESULTS: According to Affymetrix micro-array analysis, the expression of various inflammatory genes in liver was decreased by treatment of mice with the synthetic PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. In contrast, expression of Interleukin-1 receptor antagonist (IL-1ra), which was acutely stimulated by LPS treatment, was induced by PPARalpha. Up-regulation of IL-1ra by LPS was lower in PPARalpha -/- mice compared to Wt mice. Transactivation and chromatin immunoprecipitation studies identified IL-1ra as a direct positive target gene of PPARalpha with a functional PPRE present in the promoter. Up-regulation of IL-1ra by PPARalpha was conserved in human HepG2 hepatoma cells and the human monocyte/macrophage THP-1 cell line. CONCLUSIONS: In addition to down-regulating expression of pro-inflammatory genes, PPARalpha suppresses the inflammatory response by direct up-regulation of genes with anti-inflammatory properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell growth and differentiation are opposite events in the myogenic lineage. Growth factors block the muscle differentiation program by inducing the expression of transcription factors that negatively regulate the expression of muscle regulatory genes like MyoD. In contrast, extracellular clues that induce cell cycle arrest promote MyoD expression and muscle differentiation. Thus, the regulation of MyoD expression is critical for muscle differentiation. Here we show that estrogen induces MyoD expression in mouse skeletal muscle in vivo and in dividing myoblasts in vitro by relieving the MyoD promoter from AP-1 negative regulation through a mechanism involving estrogen receptor/AP-1 protein-protein interactions but independent of the estrogen receptor DNA binding activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractBACKGROUND: KRAB-ZFPs (Krüppel-associated box domain-zinc finger proteins) are vertebrate-restricted transcriptional repressors encoded in the hundreds by the mouse and human genomes. They act via an essential cofactor, KAP1, which recruits effectors responsible for the formation of facultative heterochromatin. We have recently shown that KRAB/KAP1 can mediate long-range transcriptional repression through heterochromatin spreading, but also demonstrated that this process is at times countered by endogenous influences.METHOD: To investigate this issue further we used an ectopic KRAB-based repressor. This system allowed us to tether KRAB/KAP1 to hundreds of euchromatic sites within genes, and to record its impact on gene expression. We then correlated this KRAB/KAP1-mediated transcriptional effect to pre-existing genomic and chromatin structures to identify specific characteristics making a gene susceptible to repression.RESULTS: We found that genes that were susceptible to KRAB/KAP1-mediated silencing carried higher levels of repressive histone marks both at the promoter and over the transcribed region than genes that were insensitive. In parallel, we found a high enrichment in euchromatic marks within both the close and more distant environment of these genes.CONCLUSION: Together, these data indicate that high levels of gene activity in the genomic environment and the pre-deposition of repressive histone marks within a gene increase its susceptibility to KRAB/KAP1-mediated repression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzyme polymorphism in Rhodnius prolixus and R. pallescens (Hemiptera, Reduviidae), principal vectors of Chagas' disease in Colombia, was analyzed using starch gel electrophoresis. Three geographic locations were sampled in order to determine gene flow between populations and to characterize intra- and interspecific differences. Of 25 enzymes assayed 10 were successfully resolved and then used to score the genetic variation. The enzymes PEPD, GPI, PGM and ICD were useful to differentiate these species and PGD, PGM and MDH distinguished between sylvatic and domiciliary populations of R. prolixus. Both polymorphism and heterozygosity indicated greater genetic variability in sylvatic habitats (H = 0.021) compared to domiciliary habitats (H = 0.006) in both species. Gene flow between sylvatic and domiciliary populations in R. prolixus was found to be minimal. This fact and the genetic distance between them suggest a process of genetic isolation in the domiciliary population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Amazon region of Brazil is an area of great interest because of the large distribution of hepatitis B virus in specific Western areas. Seven urban communities and 24 Indian groups were visited in a total of 4,244 persons. Each individual was interviewed in order to obtain demographic and familial information. Whole blood was collected for serology and genetic determinations. Eleven genetic markers and three HBV markers were tested. Among the most relevant results it was possible to show that (i) there was a large variation of previous exposure to HBV in both urban and non-urban groups ranging from 0 to 59.2%; (ii) there was a different pattern of epidemiological distribution of HBV that was present even among a same linguistic Indian group, with mixed patterns of correlation between HBsAg and anti-HBs and (iii) the prevalence of HBV markers (HBsAg and anti-HBs) were significantly higher (P=0.0001) among the Indian population (18.8%) than the urban groups (12.5%). Its possible that the host genetic background could influence and modulate the replication of the virus in order to generate HB carrier state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lateral hypothalamic area is considered the classic 'feeding centre', regulating food intake, arousal and motivated behaviour through the actions of orexin and melanin-concentrating hormone (MCH). These neuropeptides are inhibited in response to feeding-related signals and are released during fasting. However, the molecular mechanisms that regulate and integrate these signals remain poorly understood. Here we show that the forkhead box transcription factor Foxa2, a downstream target of insulin signalling, regulates the expression of orexin and MCH. During fasting, Foxa2 binds to MCH and orexin promoters and stimulates their expression. In fed and in hyperinsulinemic obese mice, insulin signalling leads to nuclear exclusion of Foxa2 and reduced expression of MCH and orexin. Constitutive activation of Foxa2 in the brain (Nes-Cre/+;Foxa2T156A(flox/flox) genotype) results in increased neuronal MCH and orexin expression and increased food consumption, metabolism and insulin sensitivity. Spontaneous physical activity of these animals in the fed state is significantly increased and is similar to that in fasted mice. Conditional activation of Foxa2 through the T156A mutation expression in the brain of obese mice also resulted in improved glucose homeostasis, decreased fat and increased lean body mass. Our results demonstrate that Foxa2 can act as a metabolic sensor in neurons of the lateral hypothalamic area to integrate metabolic signals, adaptive behaviour and physiological responses.