920 resultados para Threshold logic
Resumo:
Microsurgery within eloquent cortex is a controversial approach because of the high risk of permanent neurological deficit. Few data exist showing the relationship between the mapping stimulation intensity required for eliciting a muscle motor evoked potential and the distance to the motor neurons; furthermore, the motor threshold at which no deficit occurs remains to be defined.
Resumo:
Clinical and epidemiological studies show a close association between obesity and the risk of asthma development. The underlying cause-effect relationship between metabolism, innate and adaptive immunity, and inflammation remains to be elucidated.
Resumo:
Justification Logic studies epistemic and provability phenomena by introducing justifications/proofs into the language in the form of justification terms. Pure justification logics serve as counterparts of traditional modal epistemic logics, and hybrid logics combine epistemic modalities with justification terms. The computational complexity of pure justification logics is typically lower than that of the corresponding modal logics. Moreover, the so-called reflected fragments, which still contain complete information about the respective justification logics, are known to be in~NP for a wide range of justification logics, pure and hybrid alike. This paper shows that, under reasonable additional restrictions, these reflected fragments are NP-complete, thereby proving a matching lower bound. The proof method is then extended to provide a uniform proof that the corresponding full pure justification logics are $\Pi^p_2$-hard, reproving and generalizing an earlier result by Milnikel.
Resumo:
Direct observations, satellite measurements and paleo records reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its centre. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying, but small amplitude and multi-decadal to centennial periodicities and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multi-decadal scales.
Resumo:
Neurons generate spikes reliably with millisecond precision if driven by a fluctuating current--is it then possible to predict the spike timing knowing the input? We determined parameters of an adapting threshold model using data recorded in vitro from 24 layer 5 pyramidal neurons from rat somatosensory cortex, stimulated intracellularly by a fluctuating current simulating synaptic bombardment in vivo. The model generates output spikes whenever the membrane voltage (a filtered version of the input current) reaches a dynamic threshold. We find that for input currents with large fluctuation amplitude, up to 75% of the spike times can be predicted with a precision of +/-2 ms. Some of the intrinsic neuronal unreliability can be accounted for by a noisy threshold mechanism. Our results suggest that, under random current injection into the soma, (i) neuronal behavior in the subthreshold regime can be well approximated by a simple linear filter; and (ii) most of the nonlinearities are captured by a simple threshold process.
Resumo:
AIM: To identify factors that potentially influence urethral sensitivity in women. PATIENTS AND METHODS: The current perception threshold was measured by double ring electrodes in the proximal and distal urethra in 120 women. Univariate analysis using Kaplan-Meier models and multivariate analysis applying Cox regressions were performed to identify factors influencing urethral sensitivity in women. RESULTS: In univariate and multivariate analysis, women who had undergone radical pelvic surgery (radical cystectomy n = 12, radical rectal surgery n = 4) showed a significantly (log rank test P < 0.0001) increased proximal urethral sensory threshold compared to those without prior surgery (hazard ratio (HR) 4.17, 95% confidence interval (CI) 2.04-8.51), following vaginal hysterectomy (HR 4.95, 95% CI 2.07-11.85), abdominal hysterectomy (HR 5.96, 95% CI 2.68-13.23), or other non-pelvic surgery (HR 4.86, 95% CI 2.24-10.52). However, distal urethral sensitivity was unaffected by any form of prior surgery. Also other variables assessed, including age, concomitant diseases, urodynamic diagnoses, functional urethral length, and maximum urethral closure pressure at rest had no influence on urethral sensitivity in univariate as well as in multivariate analysis. CONCLUSIONS: Increased proximal but unaffected distal urethral sensory threshold after radical pelvic surgery in women suggests that the afferent nerve fibers from the proximal urethra mainly pass through the pelvic plexus which is prone to damage during radical pelvic surgery, whereas the afferent innervation of the distal urethra is provided by the pudendal nerve. Better understanding the innervation of the proximal and distal urethra may help to improve surgical procedures, especially nerve sparing techniques. Neurourol. Urodynam. (c) 2006 Wiley-Liss, Inc.
Resumo:
When reengineering legacy systems, it is crucial to assess if the legacy behavior has been preserved or how it changed due to the reengineering effort. Ideally if a legacy system is covered by tests, running the tests on the new version can identify potential differences or discrepancies. However, writing tests for an unknown and large system is difficult due to the lack of internal knowledge. It is especially difficult to bring the system to an appropriate state. Our solution is based on the acknowledgment that one of the few trustable piece of information available when approaching a legacy system is the running system itself. Our approach reifies the execution traces and uses logic programming to express tests on them. Thereby it eliminates the need to programatically bring the system in a particular state, and handles the test-writer a high-level abstraction mechanism to query the trace. The resulting system, called TESTLOG, was used on several real-world case studies to validate our claims.
Resumo:
Statistical approaches to evaluate higher order SNP-SNP and SNP-environment interactions are critical in genetic association studies, as susceptibility to complex disease is likely to be related to the interaction of multiple SNPs and environmental factors. Logic regression (Kooperberg et al., 2001; Ruczinski et al., 2003) is one such approach, where interactions between SNPs and environmental variables are assessed in a regression framework, and interactions become part of the model search space. In this manuscript we extend the logic regression methodology, originally developed for cohort and case-control studies, for studies of trios with affected probands. Trio logic regression accounts for the linkage disequilibrium (LD) structure in the genotype data, and accommodates missing genotypes via haplotype-based imputation. We also derive an efficient algorithm to simulate case-parent trios where genetic risk is determined via epistatic interactions.
Resumo:
BACKGROUND: Ondansetron, a serotonin-3 receptor antagonist, reduces postoperative shivering. Drugs that reduce shivering usually impair central thermoregulatory control, and may thus be useful for preventing shivering during induction of therapeutic hypothermia. We determined, therefore, whether ondansetron reduces the major autonomic thermoregulatory response thresholds (triggering core temperatures) in humans. METHODS: Control (placebo) and ondansetron infusions at the target plasma concentration of 250 ng ml(-1) were studied in healthy volunteers on two different days. Each day, skin and core temperatures were increased to provoke sweating; then reduced to elicit peripheral vasoconstriction and shivering. We determined the core-temperature sweating, vasoconstriction and shivering thresholds after compensating for changes in mean-skin temperature. Data were analysed using t-tests and presented as means (sds); P<0.05 was taken as significant. RESULTS: Ondensetron plasma concentrations were 278 (57), 234 (55) and 243 (58) ng ml(-1) at the sweating, vasoconstriction and shivering thresholds, respectively; these corresponded to approximately 50 mg of ondansetron which is approximately 10 times the dose used for postoperative nausea and vomiting. Ondansetron did not change the sweating (control 37.4 (0.4) degrees C, ondansetron 37.6 (0.3) degrees C, P=0.16), vasoconstriction (37.0 (0.5) degrees C vs 37.1 (0.3) degrees C; P=0.70), or shivering threshold (36.3 (0.5) degrees C vs 36.3 (0.6) degrees C; P=0.76). No sedation was observed on either study day. CONCLUSIONS: /b>. Ondansetron appears to have little potential for facilitating induction of therapeutic hypothermia.