951 resultados para Thermal analysis
Resumo:
Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
In recent decades, ceramic products have become indispensable to the technological development of humanity, occupying important positions in scientific production and consequently in industrial production. One area of the economy that continues to absorb large amounts of the products of this sector is Construction. Among the branches of the ceramic industry, there are the red ceramic industry which is traditionally the basis of that economic sector. Among the reasons for which the red ceramic industry became popular in the country, and specifically in Rio Grande do Norte, is the abundance of this raw material, easily found throughout the national territory. However, it appears that the red ceramic industry has deficiencies in technology and skilled labor, resulting in the production of ceramic goods with low added value. Among the factors that determine the quality of the ceramic products red has the proper formulation of the ceramic mass, the conformation and the firing temperature. Thus, the overall goal of this work is to study the mineralogical and technological properties, two clays from the region of the Wasteland Potiguar industrial ceramist. Therefore, the raw materials were characterized by analysis of Xray diffraction (XRD) analysis, X-ray fluorescence (XRF), particle size analysis (FA), scanning electron microscopy (SEM), optical microscopy (OM ), plasticity index (PI), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The technological properties of the material were analyzed by water absorption tests (AA%) porosity (% PA), the linear shrinkage (RT%), apparent density (MEA), loss on ignition (PF%) and flexural strength three points (TRF)
Resumo:
In this work is the addition of a metallic ion, of the metal Manganese, in a clay of Rio Grande do Norte state for structural ceramics use, the objective this study was to assess the evolution of ceramic properties. The clay was characterized by Chemical and Thermal analysis and Xray difraction. The metallic ion was added in the clay as aqueous solutions at concentrations of 100, 150 and 200 mg / L. The molded by extrusion and the burned were temperatures at 850, 950, 1050 and 1150 º C. Was made Chemical Analysis and investigated the following parameters environmental and ceramic: Solubility, Colour, Linear Retraction (%), Water Absorption (%), Gresification Curves, Apparent Porosity (%), Apparent Specific Mass (g/cm3) and Flexion Rupture Module (kgf/cm2). The results showed that increasing the concentration of metallic ion, properties such as Apparent Porosity (%), Water Absorption (%) decreases and the Flexion Rupture Module (kgf/cm2) increases with increasing temperature independent of the concentration of the ion. The gresification curves showed that the optimum firing temperatures were in the range between 950 and 1050 ° C. The evaluation of the properties showed that the ceramic material can be studied its use in solid brick and ceramic materials with structural function of filling. The results of solubility showed that the addition of ion offers no risk to the environment
Resumo:
Discussions about pollution caused by vehicles emission are old and have been developed along the years. The search for cleaner technologies and frequent weather alterations have been inducing industries and government organizations to impose limits much more rigorous to the contaminant content in fuels, which have an direct impact in atmospheric emissions. Nowadays, the quality of fuels, in relation to the sulfur content, is carried out through the process of hydrodesulfurization. Adsorption processes also represent an interesting alternative route to the removal of sulfur content. Both processes are simpler and operate to atmospheric temperatures and pressures. This work studies the synthesis and characterization of aluminophosphate impregnate with zinc, molybdenum or both, and its application in the sulfur removal from the gasoline through the adsorption process, using a pattern gasoline containing isooctane and thiophene. The adsorbents were characterized by x-ray diffraction, differential thermal analysis (DTG), x-ray fluorescence and scanning electron microscopy (SEM). The specific area, volume and pore diameter were determined by BET (Brunauer- Emmet-Teller) and the t-plot method. The sulfur was quantified by elementary analysis using ANTEK 9000 NS. The adsorption process was evaluated as function of the temperature variation and initial sulfur content through the adsorption isotherm and its thermodynamic parameters. The parameters of entropy (ΔS), enthalpy variation (ΔH) and free Gibbs energy (ΔG) were calculated through the graph ln(Kd) versus 1/T. Langmuir, Freundlich and Langmuir-Freundlich models were adjusted to the experimental data, and the last one had presented better results. The thermodynamic tests were accomplished in different temperatures, such as 30, 40 and 50ºC, where it was concluded the adsorption process is spontaneous and exothermic. The kinetic of adsorption was studied by 24 h and it showed that the capability adsorption to the adsorbents studied respect the following order: MoZnPO > MoPO > ZnPO > AlPO. The maximum adsorption capacity was 4.91 mg/g for MoZnPO with an adsorption efficiency of 49%.
Resumo:
One of the waste generated during the drilling of oil wells are gravel which are impregnated of drilling fluid. This residue consists of highly toxic chemicals, including toxic metals. This study suggests an alternative process to the treatment of this waste, by incorporating it the form of raw material in the ceramic matrix , and by solidification and stabilize the metals present, Aluminum (Al), Iron (Fe), Manganese (Mn) and Zinc (Zn). The raw materials were characterized by the techniques of X ray fluorescence (FRX), X ray diffraction (DRX), laser granulometry (GL), thermogravimetry (TG) and differential thermal analysis (ADT). To evaluate the percentage of gravel effect the environmental and technological properties were obtained from formulations containing 0, 10 and 20 % by weight of gravel in the ceramic matrix. After sintering at temperatures 1080, 1120 and 1160 °C, the samples were tested for water absorption, the linear shrinkage firing, voltage of rupture and solubility. The results obtained showed that the stabilization by solidification, is a viable alternative to safe disposal of waste drilling. Ceramics products can be used in the manufacture of solid bricks
Resumo:
The growing utilization of surfactants in several different areas of industry has led to an increase on the studies involving solutions containing this type of molecules. Due to its amphiphilic nature, its molecule presents one polar part and one nonpolar end, which easily interacts with other molecules, being able to modify the media properties. When the concentration in which its monomers are saturated, the airliquid system interface is reached, causing a decrease in interfacial tension. The surfactants from pure fatty acids containing C8, C12 and C16 carbonic chains were synthesized in an alcoholic media using sodium hydroxide. They were characterized via thermal analysis (DTA and DTG) and via infrared spectroscopy, with the intention of observing their purity. Physical and chemical properties such as superficial tension, critical micelle concentration (c.m.c), surfactant excess on surface and Gibbs free energy of micellization were determined in order to understand the behaviour of these molecules with an aqueous media. Pseudo-ternary phase diagrams were obtained aiming to limit the Windsor equilibria conditions so it could be possible to understand how the surfactants carbonic chain size contributes to the microemulsion region. Solutions with known concentrations were prepared to study how the surfactants can influence the dynamic light scattering spectroscopy (DLS) and how the diffusion coefficient is influenced when the media concentration is altered. The results showed the variation on the chain size of the studied surfactant lipophilic part allows the conception of surfactants with similar interfacial properties, but dependent on the size of the lipophilic part of the surfactant. This variation causes the surfactant to have less tendency of microemulsionate oil in water. Another observed result is that the n-alcanes molecule size promoted a decrease on the microemulsion region on the obtained phase diagrams
Resumo:
Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sugarcane bagasse ash (SCBA) is an industrial waste that contains silicon and aluminum oxides as the major components and iron, calcium, magnesium, and potassium oxides as the main minor components. In this paper, SCBA from one Brazilian factory was characterized and tested for its influence on the ceramic properties of clay/ash ceramic probes. Prismatic probes were pressed (18 MPa) using a ceramic mass mixed with 0%, 5%, 8%, and 10% ash. The probes were fired at temperatures between 800 degrees and 1200 degrees C. X-ray diffraction, X-ray fluorescence, thermal analysis (differential thermal analysis, thermo-gravimetric analysis/differential thermogravimetric analysis), and tests for texture (particle-size analysis), flexural strength, and linear shrinkage were carried out to characterize the samples. The results showed that the amount of ash to be incorporated will depend on mainly the composition of clay but also ash, and indicated that the clay used in this work can incorporate up to 10% weight of ash to produce solid bricks. The results also showed an improvement in ceramic/ash properties up to sintering temperatures higher than 1000 degrees C.
Resumo:
Formulation Additives on Formation of Films isolated from Ethylcellulose. Physicochemical and Morphological Studies. In this work were developed free films from Surelease (R), additives alpha-GOS (alfa-glucooligosaccharide) and/or Tween (R) 80 in aqueous solution. It was obtained by Teflon plates casting process. The free films were characterized by thermal analysis (DSC and TGA), infrared spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). DSC and TO analysis showed that the additives do not influenced in the thermal stability of Surelease (R) films. SEM analysis observed homogeneous morphological characteristics and phase detachment absence. FTIR-ATR spectra were used to confirm the physical mixture between the components of films.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)