946 resultados para Theoretical approach
Resumo:
Polylactic-co-glycolic nanocapsules, loaded with nanosized magnetic particles and Selol (a selenium-based anticancer drug), were successfully prepared by the precipitation method. Maghemite (gamma-Fe(2)O(3)) nanoparticles were incorporated into the nanocapsules using a highly stable ionic magnetic fluid sample. The obtained nanocapsules presented no agglomeration, negative surface charge while revealing a narrow monomodal size distribution. All the nanocapsule formulations exhibited a good physical stability at 4 degrees C during 3 month storage period. The in vitro antitumoral activity of Selol-magnetic nanocapsules was assessed using a murine melanoma cell line. The influence of nanocapsules on cell viability was investigated by spectrophotometric assay. The results demonstrated that Selol-loaded magnetic nanocapsules (at 100 mu g/ml/5 x 10(9) particle/ml) showed antitumoral activity of 50% on melanoma cells (absence of magnetic field). These results clearly indicate that the loaded nanocapsules represent a novel and promising magnetic drug delivery system suitable for cancer treatment via the active drug and magnetohyperthermia. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3556950]
Resumo:
Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR Collaboration presents a measurement of rho(0) and direct pi(+)pi(-) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN) = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross section of sigma(AuAu -> Au*Au*rho(0)) = 530 +/- 19(stat.) +/- 57(syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho 0 transverse momentum spectrum (p(T)(2)) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find sigma(inc)/sigma(coh) = 0.29 +/- 0.03 (stat.) +/- 0.08 (syst.). The ratio of direct pi(+)pi(-) to rho(0) production is comparable to that observed in gamma(p) collisions at HERA and appears to be independent of photon energy. Finally, the measured rho(0) spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.
Resumo:
Background: Recent advances in laparoscopic devices and experience with advanced techniques have increased the indications for laparoscopic liver. Aim: The aim of this work was to present a video with technical aspects of a pure laparoscopic left hemi-hepatectomy (segments 2, 3, and 4) by using the intrahepatic Glissonian approach and control of venous outflow without hilar dissection or the Pringle maneuver. Patient and Method: A 63-year-old woman with a 5-cm solitary liver metastasis was referred for treatment. Four trocars were used. The left lobe was pulled upward and the lesser omentum was divided, exposing Arantius' ligament. This ligament is a useful landmark for the identification of the main left Glissonian pedicle. A small anterior incision was made in front of the hilum, and a large clamp was introduced behind the Arantius' ligament toward the anterior incision, allowing control of the left main sheath. Ischemic discoloration of the left liver was achieved and marked with cautery. The vascular clamp was replaced by a stapler. If ischemic delineation was coincident with a previously marked area, the stapler was fired. The left hepatic vein was dissected and encircled. Parenchymal transection and vascular control of the hepatic veins were accomplished with a Harmonic scalpel and an endoscopic stapling device, as appropriate. All these steps were performed without the Pringle maneuver and without hand assistance. Results: Operative time was 220 minutes with minimum blood loss. Hospital stay was 4 days. Pathology showed free surgical margins. The patient is alive with no signs of recurrence 18 months after the operation. Conclusion: Totally laparoscopic left hemihepatectomy is safe and feasible in selected patients and should be considered for patients with benign or malignant liver neoplasms. The described technique, with the use of the intrahepatic Glissonian approach and control of venous outflow, may facilitate laparoscopic left hemihepatectomy by reducing the technical difficulties in pedicle control and may decrease bleeding during liver transection.
Resumo:
Background: mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease. Results: We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 mu g of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c(+), CD11b(+) and CD19(+) cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7). Conclusions: Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.
Resumo:
Background: Despite the importance of collecting individual data of socioeconomic status (SES) in epidemiological oral health surveys with children, this procedure relies on the parents as respondents. Therefore, type of school (public or private schools) could be used as an alternative indicator of SES, instead of collecting data individually. The aim of this study was to evaluate the use of the variable type of school as an indicator of socioeconomic status as a substitute of individual data in an epidemiological survey about dental caries in Brazilian preschool children. Methods: This study followed a cross-sectional design, with a random sample of 411 preschool children aged 1 to 5 years, representative of Catalao, Brazil. A calibrated examiner evaluated the prevalence of dental caries and parents or guardians provided information about several individual socioeconomic indicators by means of a semi-structured questionnaire. A multilevel approach was used to investigate the association among individual socioeconomic variables, as well as the type of school, and the outcome. Results: When all significant variables in the univariate analysis were used in the multiple model, only mother's schooling and household income (individual socioeconomic variables) presented significant associations with presence of dental caries, and the type of school was not significantly associated. However, when the type of school was used alone, children of public school presented significantly higher prevalence of dental caries than those enrolled in private schools. Conclusions: The type of school used as an alternative indicator for socioeconomic status is a feasible predictor for caries experience in epidemiological dental caries studies involving preschool children in Brazilian context.
Resumo:
Aims. In an earlier paper we introduced a new method for determining asteroid families where families were identified in the proper frequency domain (n, g, g + s) ( where n is the mean-motion, and g and s are the secular frequencies of the longitude of pericenter and nodes, respectively), rather than in the proper element domain (a, e, sin(i)) (semi-major axis, eccentricity, and inclination). Here we improve our techniques for reliably identifying members of families that interact with nonlinear secular resonances of argument other than g or g + s and for asteroids near or in mean-motion resonant configurations. Methods. We introduce several new distance metrics in the frequency space optimal for determining the diffusion in secular resonances of argument 2g - s, 3g - s, g - s, s, and 2s. We also regularize the dependence of the g frequency as a function of the n frequency (Vesta family) or of the eccentricity e (Hansa family). Results. Our new approaches allow us to recognize as family members objects that were lost with previous methods, while keeping the advantages of the Carruba & Michtchenko (2007, A& A, 475, 1145) approach. More important, an analysis in the frequency domain permits a deeper understanding of the dynamical evolution of asteroid families not always obtainable with an analysis in the proper element domain.
Resumo:
Aims. We calculate the theoretical event rate of gamma-ray bursts (GRBs) from the collapse of massive first-generation (Population III; Pop III) stars. The Pop III GRBs could be super-energetic with the isotropic energy up to E(iso) greater than or similar to 10(55-57) erg, providing a unique probe of the high-redshift Universe. Methods. We consider both the so-called Pop III.1 stars (primordial) and Pop III.2 stars (primordial but affected by radiation from other stars). We employ a semi-analytical approach that considers inhomogeneous hydrogen reionization and chemical evolution of the intergalactic medium. Results. We show that Pop III.2 GRBs occur more than 100 times more frequently than Pop III.1 GRBs, and thus should be suitable targets for future GRB missions. Interestingly, our optimistic model predicts an event rate that is already constrained by the current radio transient searches. We expect similar to 10-10(4) radio afterglows above similar to 0.3 mJy on the sky with similar to 1 year variability and mostly without GRBs (orphans), which are detectable by ALMA, EVLA, LOFAR, and SKA, while we expect to observe maximum of N < 20 GRBs per year integrated over at z > 6 for Pop III.2 and N < 0.08 per year integrated over at z > 10 for Pop III.1 with EXIST, and N < 0.2 for Pop III.2 GRBs per year integrated over at z > 6 with Swift.
Resumo:
Aims. An analytical solution for the discrepancy between observed core-like profiles and predicted cusp profiles in dark matter halos is studied. Methods. We calculate the distribution function for Navarro-Frenk-White halos and extract energy from the distribution, taking into account the effects of baryonic physics processes. Results. We show with a simple argument that we can reproduce the evolution of a cusp to a flat density profile by a decrease of the initial potential energy.
Resumo:
We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches-a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493241]
Resumo:
We evaluate the coincidence spectra in the nonmesonic weak decay (NMWD) Lambda N -> nN of Lambda hypernuclei (4)(Lambda)He, (5)(Lambda)He, (12)(Lambda)C, (16)(Lambda)O, and (28)(Lambda)Si, as a function of the sum of kinetic energies E(nN)=E(n)+E(N) for N=n,p. The strangeness-changing transition potential is described by the one-meson-exchange model, with commonly used parametrization. Two versions of the independent-particle shell model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are as follows: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account and (b) IPSM-b, where the highly excited hole states are considered to be quasistationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. All np and nn spectra exhibit a series of peaks in the energy interval 110 MeV < E(nN)< 170 MeV, one for each occupied shell-model state. Within the IPSM-a, and because of the recoil effect, each peak covers an energy interval proportional to A(-1) , going from congruent to 4 MeV for (28)(Lambda)Si to congruent to 40 MeV for (4)(Lambda)He. Such a description could be pretty fair for the light (4)(Lambda)He and (5)(Lambda)He hypernuclei. For the remaining, heavier, hypernuclei it is very important, however, to consider as well the spreading in strength of the deep-hole states and bring into play the IPSM-b approach. Notwithstanding the nuclear model that is employed the results depend only very weakly on the details of the dynamics involved in the decay process proper. We propose that the IPSM is the appropriate lowest-order approximation for the theoretical calculations of the of kinetic energy sum spectra in the NMWD. It is in comparison to this picture that one should appraise the effects of the final-state interactions and of the two-nucleon-induced decay mode.
Resumo:
Carotenoids are biosynthetic organic pigments that constitute an important class of one-dimensional pi-conjugated organic molecules with enormous potential for application in biophotonic devices. In this context, we studied the degenerate two-photon absorption (2PA) cross-section spectra of two carotenoid compounds (beta-carotene and beta-apo-8'-carotenal) employing the conventional and white-light-continuum Z-scan techniques and quantum chemistry calculations. Because carotenoids coexist at room temperature as a mixture of isomers, the 2PA spectra reported here are due to samples containing a distribution of isomers, presenting distinct conjugation length and conformation. We show that these compounds present a defined structure on the 2PA spectra, that peaks at 650 nm with an absorption cross-section of approximately 5000 GM, for both compounds. In addition, we observed a 2PA band at 990 nm for beta-apo-8'-carotenal, which was attributed to a overlapping of I(I)B(u) +-like and 2(I)Ag(-)-like states, which are strongly one- and two-photon allowed, respectively. Spectroscopic parameters of the electronic transitions to singlet-excited states, which are directly related to photophysical properties of these compounds, were obtained by fitting the 2PA spectra using the sum-over-states approach. The analysis and interpretations of the 2PA spectra of the investigated carotenoids were supported by theoretical predictions of one- and two-photon transitions carried out using the response functions formalism within the density functional theory framework, using the long-range corrected CAM-B3LYP functional. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590157]
Resumo:
We report experimental and theoretical studies of the two-photon absorption spectrum of two nitrofuran derivatives: nitrofurantoine, (1-(5-nitro-2-furfurilideneamine)-hidantoine) and quinifuryl, 2-(5`-nitro-2`-furanyl) ethenyl-4-{N-[4`-(N,N-diethylamino)-1`-methylbutyl]carbamoyl} quinoline. Both molecules are representative of a family of 5-nitrofuran-ethenyl-quinoline drugs that have been demonstrated to display high toxicity to various species of transformed cells in the dark. We determine the two-photon absorption cross-section for both compounds, from 560 to 880 nm, which present peak values of 64 GM for quinifuryl and 20 GM for nitrofurantoine (1 GM = 1 x 10(-50) cm(4).s.photon(-1)). Besides, theoretical calculations employing the linear and quadratic response functions were carried out at the density functional theory level to aid the interpretations of the experimental results. The theoretical results yielded oscillator strengths, two-photon transition probabilities, and transition energies, which are in good agreement with the experimental data. A higher number of allowed electronic transitions was identified for quinifuryl in comparison to nitrofurantoine by the theoretical calculations. Due to the planar structure of both compounds, the differences in the two-photon absorption cross-section values are a consequence of their distinct conjugation lengths. (c) 2011 American Institute of Physics. [doi:10.1063/1.3514911]
Resumo:
We study the propagation of perturbations in the quark gluon plasma. This subject has been addressed in other works and in most of the theoretical descriptions of this phenomenon the hydrodynamic equations have been linearized for simplicity. We propose an alternative approach, also based on hydrodynamics but taking into account the nonlinear terms of the equations. We show that these terms may lead to localized waves or even solitons. We use a simple equation of state for the QGP and expand the hydrodynamic equations around equilibrium configurations. The resulting differential equations describe the propagation of perturbations in the energy density. We solve them numerically and find that localized perturbations can propagate for long distances in the plasma. Under certain conditions our solutions mimic the propagation of Korteweg-de Vries solitons.
Resumo:
In this study, the one- and two-photon absorption spectra of seven azoaromatic compounds (five pseudostilbenes-type and two aminoazobenzenes) were theoretically investigated using the density functional theory combined with the response functions formalism. The equilibrium molecular structure of each compound was obtained at three different levels of theory: Hartree-Fock, density functional theory (DFT), and Moller-Plesset 2. The effect of solvent on the equilibrium structure and the electronic transitions of the compounds were investigated using the polarizable continuum model. For the one-photon absorption, the allowed pi ->pi(*) transition energy showed to be dependent on the molecular structures and the effect of solvent, while the n ->pi(*) and pi ->pi(*)(n) transition energies exhibited only a slight dependence. An inversion between the bands corresponding to the pi ->pi(*) and n ->pi(*) states due to the effect of solvent was observed for the pseudostilbene-type compounds. To characterize the allowed two-photon absorption transitions for azoaromatic compounds, the response functions formalism combined with DFT using the hybrid B3LYP and PBE0 functionals and the long-range corrected CAM-B3LYP functional was employed. The theoretical results support the previous findings based on the three-state model. The model takes into account the ground and two electronic excited states and has already been used to describe and interpret the two-photon absorption spectrum of azoaromatic compounds. The highest energy two-photon allowed transition for the pseudostilbene-type compounds shows to be more effectively affected (similar to 20%) by the torsion of the molecular structure than the lowest allowed transition (similar to 10%). In order to elucidate the effect of the solvent on the two-photon absorption spectra, the lowest allowed two-photon transition (dipolar transition) for each compound was analyzed using a two-state approximation and the polarizable continuum model. The results obtained reveal that the effect of solvent increases drastically the two-photon cross-section of the dipolar transition of the pseudostilbene-type compounds. In general, the features of both one- and two-photon absorption spectra of the azoaromatic compounds are well reproduced by the theoretical calculations.