965 resultados para The bilinear method
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in cylindrical coordinates. An important application of this method is the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh consisting of three concentric domains representing the borehole fluid in the center, the borehole casing and the surrounding porous formation. The spatial discretization is based on a Chebyshev expansion in the radial direction, Fourier expansions in the other directions, and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method based on the method of characteristics is used to match the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces. The viability and accuracy of the proposed method has been tested and verified in 2D polar coordinates through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. The proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is handled adequately.
Resumo:
The purpose of this study was to evaluate a new method of measuring rolling resistance in treadmill cycling and to establish its sensitivity and reproducibility. One participant was asked to keep a bicycle in equilibrium on a treadmill without pedalling at a constant speed of 5.56 m x s(-1), which was held in place in the front by a dynamometer. For each condition, the method consisted of 11 measurements of the force required to hold the cycle at different treadmill slopes (0-10%, increment 1%). The coefficient of rolling resistance was calculated based on the forces applied to the bicycle in equilibrium. To test the sensitivity of the method, the bicycle was successively equipped with three tyre types (700 x 28, 700 x 23, 700 x 22) and inflation pressure was set at 150, 300, 600, 900, and 1100 kPa. To test the reproducibility of the method, a second experimenter repeated all measurements done with the 700 x 23 tyres. The method was sensitive enough to detect an effect of both tyre type and inflation pressure (P < 0.001: two-way ANOVA). The measurement of the coefficient of rolling resistance by two separate experimenters resulted in a small bias of 0.00029 (95% CI, -0.00011 to 0.00068). In conclusion, the new method is sensitive and reliable, as well as being simple and affordable.
Resumo:
We present a method for using long-term organotypic slice co-cultures of the entorhino-hippocampal formation to analyze the axon-regenerative properties of a determined compound. The culture method is based on the membrane interphase method, which is easy to perform and is generally reproducible. The degree of axonal regeneration after treatment in lesioned cultures can be seen directly using green fluorescent protein (GFP) transgenic mice or by axon tracing and histological methods. Possible changes in cell morphology after pharmacological treatment can be determined easily by focal in vitro electroporation. The well-preserved cytoarchitectonics in the co-culture facilitate the analysis of identified cells or regenerating axons. The protocol takes up to a month.
Resumo:
The transport properties across La2/3Ca1/3MnO3/SrTiO3 (LCMO/STO) heterostructures with different thicknesses of the STO insulating barrier have been studied by using atomic force microscopy measurements in the current sensing (CS) mode. To avoid intrinsic problems of the CS method we have developed a nanostructured contact geometry of Au dots. The conduction process across the LCMO/STO interface exhibits the typical features of a tunneling process.
Resumo:
A detailed analysis of the photocapacitance signal at the near‐band and extrinsic energetic ranges in Schottky barriers obtained on horizontal Bridgman GaAs wafers, which were implanted with boron at different doses and annealed at several temperatures, has been carried out by using the optical isothermal transient spectroscopy, OITS. The optical cross sections have been determined as well as the quenching efficiency of the EL2 level which has been found to be independent of the annealing temperature. Moreover, the quenching relaxation presents two significant features: (i) a strong increase of the quenching efficiency from 1.35 eV on and (ii) a diminution of the quenching transient amplitude in relation with that shown by the fundamental EL2 level. In order to explain this behavior, different cases are discussed assuming the presence of several energy levels, the existence of an optical recuperation, or the association of the EL2 trap with two levels located, respectively, at Ev+0.45 eV and Ec−0.75 eV. The theoretical simulation, taking into account these two last cases, is in agreement with the experimental photocapacitance data at low temperature, as well as at room temperature where the EL2 filling phototransient shows an anomalous behavior. Moreover, unlike the previous data reported for the EL2 electron optical cross section, the values found using our experimental technique are in agreement with the behavior deduced from the theoretical calculation. The utilization of the OITS method has also allowed the determination of another level, whose faster optical contribution is often added to that of the EL2 level when the DLOS or standard photocapacitance is used.
Resumo:
OBJECTIVE: The measurement of cardiac output is a key element in the assessment of cardiac function. Recently, a pulse contour analysis-based device without need for calibration became available (FloTrac/Vigileo, Edwards Lifescience, Irvine, CA). This study was conducted to determine if there is an impact of the arterial catheter site and to investigate the accuracy of this system when compared with the pulmonary artery catheter using the bolus thermodilution technique (PAC). DESIGN: Prospective study. SETTING: The operating room of 1 university hospital. PARTICIPANTS: Twenty patients undergoing cardiac surgery. INTERVENTIONS: CO was determined in parallel by the use of the Flotrac/Vigileo systems in the radial and femoral position (CO_rad and CO_fem) and by PAC as the reference method. Data triplets were recorded at defined time points. The primary endpoint was the comparison of CO_rad and CO_fem, and the secondary endpoint was the comparison with the PAC. MEASUREMENTS AND MAIN RESULTS: Seventy-eight simultaneous data recordings were obtained. The Bland-Altman analysis for CO_fem and CO_rad showed a bias of 0.46 L/min, precision was 0.85 L/min, and the percentage error was 34%. The Bland-Altman analysis for CO_rad and PAC showed a bias of -0.35 L/min, the precision was 1.88 L/min, and the percentage error was 76%. The Bland-Altman analysis for CO_fem and PAC showed a bias of 0.11 L/min, the precision was 1.8 L/min, and the percentage error was 69%. CONCLUSION: The FloTrac/Vigileo system was shown to not produce exactly the same CO data when used in radial and femoral arteries, even though the percentage error was close to the clinically acceptable range. Thus, the impact of the introduction site of the arterial catheter is not negligible. The agreement with thermodilution was low.
Resumo:
Soil water properties are related to crop growth and environmental aspects and are influenced by the degree of soil compaction. The objective of this study was to determine the water infiltration and hydraulic conductivity of saturated soil under field conditions in terms of the compaction degree of two Oxisols under a no-tillage (NT). Two commercial fields were studied in the state of Rio Grande do Sul, Brazil: one a Haplortox after 14 years under NT; the other a Hapludox after seven years under NT. Maps (50 x 30 m) of the levels of mechanical penetration resistance (PR) were drawn based on the kriging method, differentiating three compaction degrees (CD): high, intermediate and low. In each CD area, the infiltration rate (initial and steady-state) and cumulative water infiltration were measured using concentric rings, with six replications, and the saturated hydraulic conductivity (K(θs)) was determined using the Guelph permeameter. Statistical evaluation was performed based on a randomized design, using the least significant difference (LSD) test and regression analysis. The steady-state infiltration rate was not influenced by the compaction degree, with mean values of 3 and 0.39 cm h-1 in the Haplortox and the Hapludox, respectively. In the Haplortox, saturated soil hydraulic conductivity was 26.76 cm h-1 at a low CD and 9.18 cm h-1 at a high CD, whereas in the Hapludox, this value was 5.16 cm h-1 and 1.19 cm h-1 for the low and high CD, respectively. The compaction degree did not affect the initial and steady-state water infiltration rate, nor the cumulative water infiltration for either soil type, although the values were higher for the Haplortox than the Hapludox.
Resumo:
A systematic method to improve the quality (Q) factor of RF integrated inductors is presented in this paper. The proposed method is based on the layout optimization to minimize the series resistance of the inductor coil, taking into account both ohmic losses, due to conduction currents, and magnetically induced losses, due to eddy currents. The technique is particularly useful when applied to inductors in which the fabrication process includes integration substrate removal. However, it is also applicable to inductors on low-loss substrates. The method optimizes the width of the metal strip for each turn of the inductor coil, leading to a variable strip-width layout. The optimization procedure has been successfully applied to the design of square spiral inductors in a silicon-based multichip-module technology, complemented with silicon micromachining postprocessing. The obtained experimental results corroborate the validity of the proposed method. A Q factor of about 17 have been obtained for a 35-nH inductor at 1.5 GHz, with Q values higher than 40 predicted for a 20-nH inductor working at 3.5 GHz. The latter is up to a 60% better than the best results for a single strip-width inductor working at the same frequency.
Resumo:
Gene correction at the site of the mutation in the chromosome is the absolute way to really cure a genetic disease. The oligonucleotide (ODN)-mediated gene repair technology uses an ODN perfectly complementary to the genomic sequence except for a mismatch at the base that is mutated. The endogenous repair machinery of the targeted cell then mediates substitution of the desired base in the gene, resulting in a completely normal sequence. Theoretically, it avoids potential gene silencing or random integration associated with common viral gene augmentation approaches and allows an intact regulation of expression of the therapeutic protein. The eye is a particularly attractive target for gene repair because of its unique features (small organ, easily accessible, low diffusion into systemic circulation). Moreover therapeutic effects on visual impairment could be obtained with modest levels of repair. This chapter describes in details the optimized method to target active ODNs to the nuclei of photoreceptors in neonatal mouse using (1) an electric current application at the eye surface (saline transpalpebral iontophoresis), (2) combined with an intravitreous injection of ODNs, as well as the experimental methods for (3) the dissection of adult neural retinas, (4) their immuno-labelling, and (5) flat-mounting for direct observation of photoreceptor survival, a relevant criteria of treatment outcomes for retinal degeneration.
Resumo:
OBJECTIVE: Although dual-energy X-ray absorptiometry (DEXA) is the preferred method to estimate adiposity, body mass index (BMI) is often used as a proxy. However, the ability of BMI to measure adiposity change among youth is poorly evidenced. This study explored which metrics of BMI change have the highest correlations with different metrics of DEXA change. METHODS: Data were from the Quebec Adipose and Lifestyle Investigation in Youth cohort, a prospective cohort of children (8-10 years at recruitment) from Québec, Canada (n=557). Height and weight were measured by trained nurses at baseline (2008) and follow-up (2010). Metrics of BMI change were raw (ΔBMIkg/m(2) ), adjusted for median BMI (ΔBMIpercentage) and age-sex-adjusted with the Centers for Disease Control and Prevention growth curves expressed as centiles (ΔBMIcentile) or z-scores (ΔBMIz-score). Metrics of DEXA change were raw (total fat mass; ΔFMkg), per cent (ΔFMpercentage), height-adjusted (fat mass index; ΔFMI) and age-sex-adjusted z-scores (ΔFMz-score). Spearman's rank correlations were derived. RESULTS: Correlations ranged from modest (0.60) to strong (0.86). ΔFMkg correlated most highly with ΔBMIkg/m(2) (r = 0.86), ΔFMI with ΔBMIkg/m(2) and ΔBMIpercentage (r = 0.83-0.84), ΔFMz-score with ΔBMIz-score (r = 0.78), and ΔFMpercentage with ΔBMIpercentage (r = 0.68). Correlations with ΔBMIcentile were consistently among the lowest. CONCLUSIONS: In 8-10-year-old children, absolute or per cent change in BMI is a good proxy for change in fat mass or FMI, and BMI z-score change is a good proxy for FM z-score change. However change in BMI centile and change in per cent fat mass perform less well and are not recommended.
Resumo:
Trees are a great bank of data, named sometimes for this reason as the "silentwitnesses" of the past. Due to annual formation of rings, which is normally influenced directly by of climate parameters (generally changes in temperature and moisture or precipitation) and other environmental factors; these changes, occurred in the past, are"written" in the tree "archives" and can be "decoded" in order to interpret what hadhappened before, mainly applied for the past climate reconstruction.Using dendrochronological methods for obtaining samples of Pinus nigra fromthe Catalonian PrePirineous region, the cores of 15 trees with total time spine of about 100 - 250 years were analyzed for the tree ring width (TRW) patterns and had quite high correlation between them (0.71 ¿ 0.84), corresponding to a common behaviour for the environmental changes in their annual growth.After different trials with raw TRW data for standardization in order to take outthe negative exponential growth curve dependency, the best method of doubledetrending (power transformation and smoothing line of 32 years) were selected for obtaining the indexes for further analysis.Analyzing the cross-correlations between obtained tree ring width indexes andclimate data, significant correlations (p<0.05) were observed in some lags, as forexample, annual precipitation in lag -1 (previous year) had negative correlation with TRW growth in the Pallars region. Significant correlation coefficients are between 0.27- 0.51 (with positive or negative signs) for many cases; as for recent (but very short period) climate data of Seu d¿Urgell meteorological station, some significant correlation coefficients were observed, of the order of 0.9.These results confirm the hypothesis of using dendrochronological data as aclimate signal for further analysis, such as reconstruction of climate in the past orprediction in the future for the same locality.
Resumo:
For successful treatment of prosthetic joint infection, the identification of the infecting microorganism is crucial. Cultures of synovial fluid and intraoperative periprosthetic tissue represent the standard method for diagnosing prosthetic joint infection. Rapid and accurate diagnostic tools which can detect a broad range of causing microorganisms and their antimicrobial resistance are increasingly needed. With newer diagnostic techniques, such as sonication of removed implants, microcalorimetry, molecular methods and mass spectrometry, the sensitivity has been significantly increased. In this article, we describe the conventional and newer diagnostic techniques with their advantages and potential future applications.
Resumo:
Rhizoctonia-like fungi are the main mycorrhizal fungi in orchid roots. Morphological characterization and analysis of conserved sequences of genomic DNA are frequently employed in the identification and study of fungi diversity. However, phytopathogenic Rhizoctonia-like fungi have been reliably and accurately characterized and identified through the examination of the fatty acid composition. To evaluate the efficacy of fatty acid composition in characterizing and identifying Rhizoctonia-like mycorrhizal fungi in orchids, three Epulorhiza spp. mycorrhizal fungi from Epidendrum secundum, two unidentified fungi isolated from Epidendrum denticulatum, and a phytopathogenic fungus, Ceratorhiza sp. AGC, were grouped based on the profile of their fatty acids, which was assessed by the Euclidian and Mahalanobis distances and the UPGMA method. Dendrograms distinguished the phytopathogenical isolate of Ceratorhiza sp. AGC from the mycorrhizal fungi studied. The symbionts of E. secundum were grouped into two clades, one containing Epulorhiza sp.1 isolates and the other the Epulorhiza sp.2 isolate. The similarity between the symbionts of E. denticulatum and Epulorhiza spp. fungi suggests that symbionts found in E. denticulatum may be identified as Epulorhiza. These results were corroborated by the analysis of the rDNA ITS region. The dendrogram constructed based on the Mahalanobis distance differentiated the clades most clearly. Fatty acid composition analysis proved to be a useful tool for characterizing and identifying Rhizoctonia-like mycorrhizal fungi.
Resumo:
The rate of carbon dioxide production is commonly used as a measure of microbial activity in the soil. The traditional method of CO2 determination involves trapping CO2 in an alkali solution and then determining CO2 concentration indirectly by titration of the remaining alkali in the solution. This method is still commonly employed in laboratories throughout the world due to its relative simplicity and the fact that it does not require expensive, specific equipment. However, there are several drawbacks: the method is time-consuming, requires large amounts of chemicals and the consistency of results depends on the operator's skills. With this in mind, an improved method was developed to analyze CO2 captured in alkali traps, which is cheap and relatively simple, with a substantially shorter sample handling time and reproducibility equivalent to the traditional titration method. A comparison of the concentration values determined by gas phase flow injection analysis (GPFIA) and titration showed no significant difference (p > 0.05), but GPFIA has the advantage that only a tenth of the sample volume of the titration method is required. The GPFIA system does not require the purchase of new, costly equipment but the device was constructed from items commonly found in laboratories, with suggestions for alternative configurations for other detection units. Furthermore, GPFIA for CO2 analysis can be equally applied to samples obtained from either the headspace of microcosms or from a sampling chamber that allows CO2 to be released from alkali trapping solutions. The optimised GPFIA method was applied to analyse CO2 released from degrading hydrocarbons from a site contaminated by diesel spillage.
Resumo:
The species Salix x rubens is being grown on the Southern Plateau of Santa Catarina since the 1940s, but so far the soil fertility requirements of the crop have not been assessed. This study is the first to evaluate the production profile of willow plantations in this region, based on the modified method of Summer & Farina (1986), for the recommendation of fertility levels for willow. By this method, based on the law of Minimum and of Maximum for willow production for the conditions on the Southern Plateau of Santa Catarina, the following ranges could be recommended: pH: 5.0-6.5; P: 12-89 mg dm-3; Mg: 3.2-7.5 mg; Zn: 5.0-8.3 mg dm-3; Cu: 0.8-4.6 mg dm-3; and Mn; 20-164 mg dm-3. The Ca/Mg ratio should be between 1.2 and 2.9. For K and Ca only the lower (sufficiency level), but not the upper threshold (excess) was established, with respectively 114 mg dm-3 and 5.3 cmol c dm-3. It was also possible to determine the upper threshold for Al and the Al/Ca ratio, i.e., 1.7 cmol c dm-3 and 0.28, respectively. For maximum yields, the clay in the soil surface layer should be below 320 g dm-3.