891 resultados para The 7pm Project
Resumo:
The vertical distribution (0 to 100 m) and abundance of nanoflagellates were examined in the oligotrophic Aegean Sea (east Mediterranean) in early spring (south basin) and late summer (north and south basins) of 1997 in the framework of the MATER project (Mass Transfer and Ecosystem Response). Different trophic types of nanoflagellates (mixotrophic, heterotrophic, and phototrophic) were identified based on the possession of chloroplasts and the consumption of Fluorescently Labelled Minicells (FLM). Bacterial production (leucine method) was compared with bacterivory estimated from FLM consumption. We found that mixotrophic nanoflagellates played a small role as bacterivores relative to heterotrophic nanoflagellates and total bacterivory roughly balanced bacterial production. In early spring with cool (14.2°C) well-mixed water columns, flagellate concentrations were lowest, phototrophic flagellates were the dominant group and concentrations varied little with depth. Average concentrations of mixotrophs, heterotrophs and autotrophs were 0.07, 0.34, and 0.64 x 103 cells/ml, respectively. Bacterial production in the 0 to 100 m layer averaged about 0.74 µg C/l/d. Estimated nanoflagellate bacterivory from FLM ingestion accounted for 40% of bacterial production with mixotrophic nanoflagellates consuming 5% of bacterial production. In late summer, total nanoflagellate concentrations were higher. Average concentrations of mixotrophs, heterotrophs and autotrophs were 0.09, 1.14, and 0.66 x 103 cells/ml, respectively, in the southern basin and 0.09, 1.1, and 0.98 x 103 cells/ml, respectively, in the northern basin. In September, bacterial production for both basins roughly balanced estimated nanoflagellate consumption. Similar to the March estimates, mixotrophic nanoflagellates accounted for about 5% of nanoflagellate bacterivory. In a nutrient enrichment experiment in March, treatments including phosphorus resulted in increased bacterial production and reductions in identifiable mixotrophs.
Resumo:
In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Methodology used for the PLEA project was based on the 2001 survey protocols, Reef Check Australia protocols and Coral Watch methods. This hybrid methodology was used to monitor substrate and benthos, invertebrates, fish, and reef health impacts. Additional analyses were conducted with georeferenced photo transects. The PLEA marine surveys were conducted over six weekends in 2014 totaling 535 dives and 376 hours underwater. Two training weekends (February and March) were attended by 44 divers, whilst biological surveys were conducted on seasonal weekends (February, May, July and October). Three reefs were surveyed, with two semi-permanent transects at Flat Rock, two at Shag Rock, and one at Manta Ray Bommie. Each transect was sampled once every survey weekend, with the transect tapes deployed at a depth of 10 m below chart datum. Fish populations were assessed using a visual census along 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape), 5 m high and 20 m in length. Fish families and species were chosen that are commonly targeted by recreational or commercial fishers, or targeted by aquarium collectors, and that were easily identified by their body shape. Rare or otherwise unusual species were also recorded. Target invertebrate populations were assessed using visual census along 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape) and 20 m in length. The diver surveying invertebrates conducted a 'U-shaped' search pattern, covering 2.5 m on either side of the transect tape. Target impacts were assessed using a visual census along the 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape) and 20 m in length. The transect was surveyed via a 'U-shaped' search pattern, covering 2.5 m on either side of the transect tape. Substrate surveys were conducted using the point sampling method, enabling percentage cover of substrate types and benthic organisms to be calculated. The substrate or benthos under the transect line was identified at 0.5m intervals, with a 5m gap between each of the three 20m segments. Categories recorded included various growth forms of hard and soft coral, key species/growth forms of algae, other living organisms (i.e. sponges), recently killed coral, and, non-living substrate types (i.e. bare rock, sand, rubble, silt/clay).
Resumo:
This paper describes the ways and means of assembling and quality controling the Irminger Sea and Iceland Sea time-series biogeochemical data which are included in the CARINA data set. The Irminger Sea and the Iceland Sea are hydrographically different regions where measurements of sea water carbon and nutrient chemistry were started in 1983. The sampling is seasonal, four times a year. The carbon chemistry is studied with measurements of the partial pressure of carbon dioxide in seawater, pCO2, and total dissolved inorganic carbon, TCO2. The carbon chemistry data are for surface waters only until 1991 when water column sampling was initiated. Other measured parameters are salinity, dissolved oxygen and the inorganic nutrients nitrate, phosphate and silicate. Because of the CARINA criteria for secondary quality control, depth >1500 m, the IRM-TS could not be included in the routine QC and the IS-TS only in a limited way. However, with the information provided here, the quality of the data can be assessed, e.g. on the basis of the results obtained with the use of reference materials.
Resumo:
Species diversity is the most common variable reported in recent ecological research articles. Ecological processes, however, are driven by individuals. High abundances make arthropods, despite their small body sizes, important actors in food webs. We sampled arthropod assemblages in disturbed and undisturbed vegetation types along an elevation gradient of from 800 to 4550 m a.s.l. on the southern slopes of Mt. Kilimanjaro, Tanzania. In our analysis, we focused on 13 different lineages of arthropods that represented three major functional groups: predators, herbivores and decomposers. The samples were collected with pitfall traps on 59 (of 60) study sites within the framework of the KiLi-project (https://www.kilimanjaro.biozentrum.uni-wuerzburg.de/). In each of twelve vegetation types five sampling sites of 50 m x 50 m were established with a minimum distance of 300 m between the individual sites. On each of the 59 sites, ten pitfall traps were evenly spaced along two 50 m transects, with a distance of 10 m between individual traps and 20 m between the parallel transects. Pitfall traps were filled with 100-200 ml of a mixture of ethylenglycol and water (1:1) with a drop of liquid soap to break surface tension. Traps were exposed at 2 to 5 sampling events for seven days in both the dry and wet seasons between May 2011 and October 2012. The reported abundances per lineage were averaged twice: first over all samples per site for each sampling event (3-10 analyzed samples per site and sampling event), and then averaged over all sampling events for each site.
Resumo:
Data compiled within the IMPENSO project. The Impact of ENSO on Sustainable Water Management and the Decision-Making Community at a Rainforest Margin in Indonesia (IMPENSO), http://www.gwdg.de/~impenso, was a German-Indonesian research project (2003-2007) that has studied the impact of ENSO (El Nino-Southern Oscillation) on the water resources and the agricultural production in the PALU RIVER watershed in Central Sulawesi. ENSO is a climate variability that causes serious droughts in Indonesia and other countries of South-East Asia. The last ENSO event occurred in 1997. As in other regions, many farmers in Central Sulawesi suffered from reduced crop yields and lost their livestock. A better prediction of ENSO and the development of coping strategies would help local communities mitigate the impact of ENSO on rural livelihoods and food security. The IMPENSO project deals with the impact of the climate variability ENSO (El Niño Southern Oscillation) on water resource management and the local communities in the Palu River watershed of Central Sulawesi, Indonesia. The project consists of three interrelated sub-projects, which study the local and regional manifestation of ENSO using the Regional Climate Models REMO and GESIMA (Sub-project A), quantify the impact of ENSO on the availability of water for agriculture and other uses, using the distributed hydrological model WaSiM-ETH (Sub-project B), and analyze the socio-economic impact and the policy implications of ENSO on the basis of a production function analysis, a household vulnerability analysis, and a linear programming model (Sub-project C). The models used in the three sub-projects will be integrated to simulate joint scenarios that are defined in collaboration with local stakeholders and are relevant for the design of coping strategies.
Resumo:
Bathymetry based on data recorded during MSM34-2 between 27.12.2013 and 18.01.2014 in the Black Sea. The main objective of this cruise was the mapping and imaging of the gas hydrate distribution and gas accumulations as well as possible gas migration pathways. Objectives of Cruise: Gas hydrates have been the focus of scientific and economic interest for the past 15-20 years, mainly because the amount of carbon stored in gas hydrates is much greater than in other carbon reservoirs. Several countries including Japan, Korea and India have launched vast reasearch programmes dedicated to the exploration for gas hydrate resources and ultimately the exploitation of the gas hydrates for methane. The German SUGAR project that is financed the the Ministry of Education and Research (BmBF) and the Ministry of Economics (BmWi) aims at developing technology to exploit gas hydrate resources by injecting and storing CO2 instead of methane in the hydrates. This approach includes techniques to locate and quantify hydrate reservoirs, drill into the reservoir, extract methane from the hydrates by replacing it with CO2, and monitor the thus formed CO2-hydrate reservoir. Numerical modeling has shown that any exploitation of the gas hydrates can only be succesful, if sufficient hydrate resources are present within permeable reservoirs such as sandy or gravelly deposits. The ultimate goal of the SUGAR project being a field test of the technology developed within the project, knowledge of a suitable test site becomes crucial. Within European waters only the Norwegian margin and the Danube deep-sea fan show clear geophysical evidence for large gas hydrate accumulations, but only the Danube deep-sea fan most likely contains gas hydrates within sandy deposits. The main objective of cruise MSM34 therefore is locating and characterising suitable gas hydrate deposits on the Danube deep-sea fan.
Resumo:
DNA extraction was carried out as described on the MICROBIS project pages (http://icomm.mbl.edu/microbis ) using a commercially available extraction kit. We amplified the hypervariable regions V4-V6 of archaeal and bacterial 16S rRNA genes using PCR and several sets of forward and reverse primers (http://vamps.mbl.edu/resources/primers.php). Massively parallel tag sequencing of the PCR products was carried out on a 454 Life Sciences GS FLX sequencer at Marine Biological Laboratory, Woods Hole, MA, following the same experimental conditions for all samples. Sequence reads were submitted to a rigorous quality control procedure based on mothur v30 (doi:10.1128/AEM.01541-09) including denoising of the flow grams using an algorithm based on PyroNoise (doi:10.1038/nmeth.1361), removal of PCR errors and a chimera check using uchime (doi:10.1093/bioinformatics/btr381). The reads were taxonomically assigned according to the SILVA taxonomy (SSURef v119, 07-2014; doi:10.1093/nar/gks1219) implemented in mothur and clustered at 98% ribosomal RNA gene V4-V6 sequence identity. V4-V6 amplicon sequence abundance tables were standardized to account for unequal sampling effort using 1000 (Archaea) and 2300 (Bacteria) randomly chosen sequences without replacement using mothur and then used to calculate inverse Simpson diversity indices and Chao1 richness (doi:10.2307/4615964). Bray-Curtis dissimilarities (doi:10.2307/1942268) between all samples were calculated and used for 2-dimensional non metric multidimensional scaling (NMDS) ordinations with 20 random starts (doi:10.1007/BF02289694). Stress values below 0.2 indicated that the multidimensional dataset was well represented by the 2D ordination. NMDS ordinations were compared and tested using Procrustes correlation analysis (doi:10.1007/BF02291478). All analyses were carried out with the R statistical environment and the packages vegan (available at: http://cran.r-project.org/package=vegan), labdsv (available at: http://cran.r-project.org/package=labdsv), as well as with custom R scripts. Operational taxonomic units at 98% sequence identity (OTU0.03) that occurred only once in the whole dataset were termed absolute single sequence OTUs (SSOabs; doi:10.1038/ismej.2011.132). OTU0.03 sequences that occurred only once in at least one sample, but may occur more often in other samples were termed relative single sequence OTUs (SSOrel). SSOrel are particularly interesting for community ecology, since they comprise rare organisms that might become abundant when conditions change.16S rRNA amplicons and metagenomic reads have been stored in the sequence read archive under SRA project accession number SRP042162.