996 resultados para Texture recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model-based approaches to handling additive background noise and channel distortion, such as Vector Taylor Series (VTS), have been intensively studied and extended in a number of ways. In previous work, VTS has been extended to handle both reverberant and background noise, yielding the Reverberant VTS (RVTS) scheme. In this work, rather than assuming the observation vector is generated by the reverberation of a sequence of background noise corrupted speech vectors, as in RVTS, the observation vector is modelled as a superposition of the background noise and the reverberation of clean speech. This yields a new compensation scheme RVTS Joint (RVTSJ), which allows an easy formulation for joint estimation of both additive and reverberation noise parameters. These two compensation schemes were evaluated and compared on a simulated reverberant noise corrupted AURORA4 task. Both yielded large gains over VTS baseline system, with RVTSJ outperforming the previous RVTS scheme. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a preliminary study that seeks to show how asphalt grading and air voids are related to the texture depth of asphalt. The fiftieth percentile particle size (D50) is shown to be a good predictor of texture depth measurements from a collected database of field and laboratory studies. The D50 is used to normalise collected texture data and this 'relative texture' is shown to correlate with air voids. Regression analyses confirm that air voids should be included along with a measure of gradation in the interpretation of asphalt surface texture.The derived formulae are used to develop correlation charts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech recognition systems typically contain many Gaussian distributions, and hence a large number of parameters. This makes them both slow to decode speech, and large to store. Techniques have been proposed to decrease the number of parameters. One approach is to share parameters between multiple Gaussians, thus reducing the total number of parameters and allowing for shared likelihood calculation. Gaussian tying and subspace clustering are two related techniques which take this approach to system compression. These techniques can decrease the number of parameters with no noticeable drop in performance for single systems. However, multiple acoustic models are often used in real speech recognition systems. This paper considers the application of Gaussian tying and subspace compression to multiple systems. Results show that two speech recognition systems can be modelled using the same number of Gaussians as just one system, with little effect on individual system performance. Copyright © 2009 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper tackles the novel challenging problem of 3D object phenotype recognition from a single 2D silhouette. To bridge the large pose (articulation or deformation) and camera viewpoint changes between the gallery images and query image, we propose a novel probabilistic inference algorithm based on 3D shape priors. Our approach combines both generative and discriminative learning. We use latent probabilistic generative models to capture 3D shape and pose variations from a set of 3D mesh models. Based on these 3D shape priors, we generate a large number of projections for different phenotype classes, poses, and camera viewpoints, and implement Random Forests to efficiently solve the shape and pose inference problems. By model selection in terms of the silhouette coherency between the query and the projections of 3D shapes synthesized using the galleries, we achieve the phenotype recognition result as well as a fast approximate 3D reconstruction of the query. To verify the efficacy of the proposed approach, we present new datasets which contain over 500 images of various human and shark phenotypes and motions. The experimental results clearly show the benefits of using the 3D priors in the proposed method over previous 2D-based methods. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automatic speaker recognition system for intelligence applications. The system has to provide functionalities for a speaker skimming application in which databases of recorded conversations belonging to an ongoing investigation can be annotated and quickly browsed by an operator. The paper discusses the criticalities introduced by the characteristics of the audio signals under consideration - in particular background noise and channel/coding distortions - as well as the requirements and functionalities of the system under development. It is shown that the performance of state-of-the-art approaches degrades significantly in presence of moderately high background noise. Finally, a novel speaker recognizer based on phonetic features and an ensemble classifier is presented. Results show that the proposed approach improves performance on clean audio, and suggest that it can be employed towards improved real-world robustness. © EURASIP, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of image processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based construction site image retrieval method is presented. This method is based on image retrieval techniques, and specifically those related with material and object identification and matches known material samples with material clusters within the image content. The results demonstrate the suitability of this method for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of Image Processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based shape recognition model is presented. This model was devised to enhance the recognition capabilities of our existing material based image retrieval model. The shape recognition model is based on clustering techniques, and specifically those related with material and object segmentation. The model detects the borders of each previously detected material depicted in the image, examines its linearity (length/width ratio) and detects its orientation (horizontal/vertical). The results emonstrate the suitability of this model for construction site image retrieval purposes and reveal the capability of existing clustering technologies to accurately identify the shape of a wealth of materials from construction site images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.