947 resultados para Textile industry - Waste disposal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The possibility to vary the energy matrix, thus reducing the dependency on fossil fuels, has amplified the acceptance of biomass as an alternative fuel. Despite being a cheap and renewable option and the fact that Brazil is a major producer of waste from agriculture and forestry activities, the use of these materials has barriers due to its low density and low energetic efficiency, which can raise the costs of its utilization. Biomass densification has drawn attention due to its advantage in comparison to in natura biomass due to its better physical and combustion characteristics. The objective of this paper is to evaluate the impact of biomass densification in distribution and transport costs. To reach this objective, a mathematical model was used to represent decisions at a supply chain that coordinates the purchase and sale of forestry and wood waste. The model can evaluate the options to deliver biomass through the supply chain combining demand meeting and low cost. Results point to the possibility of an economy of 60% in transport cost and a reduction of 63% in the required quantity of trucks when densified waste is used. However, costs related to the densifying process lead to an increase of total supply costs of at least 37,8% in comparison to in natura waste. Summing up, the viability of biomass briquettes industry requires a cheaper densification process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choosing the right supplier is crucial for long-term business prospects and profitability. Thus organizational buyers are naturally very interested in how they can select the right supplier for their needs. Likewise, suppliers are interested in knowing how their customers make purchasing decisions in order to effectively sell and market to them. From the point of view of the textile and clothing (T&C) industry, regulatory changes and increasing low-cost and globalization pressures have led to the rise of low-cost production locations India and China as the world’s largest T&C producers. This thesis will examine T&C trade between Finland and India specifically in the context of non-industrial T&C products. Its main research problem asks: what perceptions do Finnish T&C industry buyers hold of India and Indian suppliers? B2B buyers use various supplier selection models and criteria in making their purchase decisions. A significant amount of research has been done into supplier selection practices, and in the context of international trade, country of origin (COO) perceptions specifically have garnered much attention. This thesis uses a mixed methods approach (online questionnaire and in-depth interviews) to evaluate Finnish T&C buyers’ supplier selection criteria, COO perceptions of India and experiences of Indian suppliers. It was found that the most important supplier selection criteria used by Finnish T&C buyers are quality, reliability and cost. COO perceptions were not found to be influential in purchasing process. Indian T&C suppliers’ strengths were found to be low cost, flexibility and a history of traditional T&C expertise. Their weaknesses include product quality and unreliable delivery times. Overall, the main challenges that need to be overcome by Indian T&C companies are logistical difficulties and the cost vs. quality trade-off. Despite positive perceptions of India for cost, the overall value offered by Indian T&C products was perceived to be low due to poor quality. Unreliable delivery time experiences also affected buyer’s reliability perceptions of Indian suppliers. The main limiting factors of this thesis relate to the small sample size used in the research. This limits the generalizability of results and the ability to evaluate the reliability and validity of some of the research instruments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meeting the needs of both present and future generations forms the foundation of sustainable development. Concern about food demand is increasing alongside the continuously growing population. In the pursuit of food security preventing food waste is one solution avoiding the negative environmental impacts that result from producing food unnecessarily. Packages offer one answer to preventing food waste, as they 1) preserve and protect food, 2) introduce the user to the correct way to handle and use the food and package and 3) allow the user to consume the food in its entirety. This thesis aims to enhance the sustainability of food packages by giving special emphasis to preventing food waste. The focus of this thesis is to assist the packaging designer in being able to take into account the requirements for the sustainability of food packages and to be able to integrate these requirements into the product development process. In addition, life cycle methods that can be used as a tool in the packaging design process or in assessing the sustainability of finished food-packaging combinations are evaluated. The methods of life cycle costing (LCC) and life cycle working environment (LCWE) are briefly discussed. The method of life cycle assessment (LCA) is examined more thoroughly through the lens of the literature review of food-package LCA case studies published in the 21st century in three relevant journals. Based on this review and on experiences learned from conducting LCAs, recommendations are given as to how the LCA practitioner should conduct a food packaging study to make most of the results. Two case studies are presented in this thesis. The first case study relates the results of a life cycle assessment conducted for three food items (cold cut (ham), sliced dark bread (rye) and Soygurt drink) and the alternative packaging options of each. Results of this study show that the packaging constitutes only 1–12 % of the total environmental impacts of the food-packaging combination. The greatest effect is derived from the food itself and the wasted food. Even just a small percentage of wasted food causes more environmental impacts than does the packaging. The second case study presents the results of LCC and LCWE analysis done for fruit and vegetable transport packages. In this thesis, the specific results of the study itself are not the focus, but rather the study methods and scope are analysed based on how these complement the sustainability assessment of food packages. This thesis presents reasons why prevention of food waste should be more thoroughly taken into account in food packaging design. In addition, the task of the packaging designer is facilitated by the requirements of sustainable food packaging, by the methods and step-by-step guidance on how to integrate sustainability issues into the design process, and by the recommendations on how to assess the sustainability of food packages. The intention of this thesis is to express the issues that are important in the field of the food packaging industry. Having recognised and implemented these issues, businesses can better manage the risks that could follow from neglecting these sustainability aspects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrothermal carbonization (HTC) is a thermochemical process used in the production of charred matter similar in composition to coal. It involves the use of wet, carbohydrate feedstock, a relatively low temperature environment (180 °C-350 °C) and high autogenous pressure (up to 2,4 MPa) in a closed system. Various applications of the solid char product exist, opening the way for a range of biomass feedstock materials to be exploited that have so far proven to be troublesome due to high water content or other factors. Sludge materials are investigated as candidates for industrial-scale HTC treatment in fuel production. In general, HTC treatment of pulp and paper industry sludge (PPS) and anaerobically digested municipal sewage sludge (ADS) using existing technology is competitive with traditional treatment options, which range in price from EUR 30-80 per ton of wet sludge. PPS and ADS can be treated by HTC for less than EUR 13 and 33, respectively. Opportunities and challenges related to HTC exist, as this relatively new technology moves from laboratory and pilot-scale production to an industrial scale. Feedstock materials, end-products, process conditions and local markets ultimately determine the feasibility of a given HTC operation. However, there is potential for sludge materials to be converted to sustainable bio-coal fuel in a Finnish context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the rapid development of the society as well as the lifestyle, the generation of commercial waste is getting more complicated to control. The situation of packaging waste and food waste – the main fractions of commercial waste in different countries in Europe and Asia is analyzed in order to evaluate and suggest necessary improvements for the existing waste management system in the city of Hanoi, Vietnam. From all waste generation sources of the city, a total amount of approximately 4000 tons of mixed waste is transported to the composting facility and the disposal site, which emits a huge amount of 1,6Mt of GHG emission to the environment. Recycling activity is taking place spontaneously by the informal pickers, leads to the difficulty in managing the whole system and uncertainty of the overall data. With a relative calculation, resulting in only approximately 0,17Mt CO2 equivalent emission, incinerator is suggested to be the solution of the problem with overloaded landfill and raising energy demand within the inhabitants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic is a toxic substance. The amount of arsenic in waste water is a raising problem because of increasing mining industry. Arsenic is connected to cancers in areas where arsenic concentration in drinking water is higher than recommendations. The main object in this master’s thesis was to research how ferrous hydroxide waste material is adsorbed arsenic from ammonia containing waste water. In this master’s thesis there is two parts: theoretical and experimental part. In theoretical part harmful effects of arsenic, theory of adsorption, isotherms modeling of adsorption and analysis methods of arsenic are described. In experimental part adsorption capacity of ferrous hydroxide waste material and adsorption time with different concentrations of arsenic were studied. Waste material was modified with two modification methods. Based on experimental results the adsorption capacity of waste material was high. The problem with waste material was that at same time with arsenic adsorption sulfur was dissolving in solution. Waste material was purified from sulfur but purification methods were not efficient enough. Purification methods require more research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the thesis was both to study wooden packaging waste reuse and refining generated in the forestry machine factory environment, and to find alternative wooden packaging waste utilization options in order to create a new operating model which would decrease the overall amount of waste produced. As environmental and waste legislation has become more rigid and companies' own environmental management systems’ requirements and control have increased, companies have had to consider their environmental aspects more carefully. Companies have to take into account alternative ways of reducing waste through an increase in reuse and recycling. A part of this waste is from different forms of packaging. In the metal industry the most heavily used packaging material is wooden packaging, as such material is heavy and the packaging has to be able to bear heavy stress. In the theoretical part of the thesis, the requirements of packaging and packaging waste legislation, as well as environmental management systems governing companies’ processing of their packaging waste, are studied. The theoretical part includes a process study of systems, which direct packaging waste and wooden packaging waste refining. In addition, methods related to the continuous improvement of these processes are introduced. This thesis concentrates on designing and creating a new operating model in relation to wooden packaging waste processing. The main target was to find an efficient model in order to decrease the total amount of wooden packaging waste and to increase refining. The empirical part introduces methods for approaches to wooden packaging waste re-utilization, as well as a description of a new operating model and its impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to perform the microbiological and physicochemical characterization of surimi made from waste of piramutaba filleting. The results of physicochemical characterization of the waste and surimi were: moisture (76.37 and 79.11%), total lipids (5.35 and 0.74%), proteins (14.92 and 10.79%), ash (3.03 and 2.35%), pH (6.9 and 7.4), caloric value (109.15 and 77.86 kcal.g-1), and water activity (both 0.98), respectively. The results of the levels of total volatile bases were 7.29 mgN/100-1 g (waste) and 7.01% carbohydrate (surimi). The values of total lipids and proteins were reduced during the preparation of surimi, probably due to successive washes during the processing. Waste and surimi were examined microbiologically and are in compliance with required parameters. The results show a loss of red (a* parameter) and yellow (b* parameter) color. On the other hand, the L* parameter (lightness) increased after the processing of surimi. It can be concluded that piramutaba waste can be used for surimi preparation and as a source of nutrients for human consumption, providing an alternative use of these wastes avoiding their disposal polluting the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fish industry generates high volume of waste from fish oil that can have the extraction of its lipids used as nutraceuticals and foods. The objective of this study was to produce unsaturated fatty acids from industrialized fish oil by means of a differentiated hydrolysis process. The samples used were crude fish oil obtained from Campestre industry and characterized through physical-chemical parameters, according to AOCS: acidity, peroxide, saponification, iodine and percentage of free fatty acids and also obtained the fatty acid profile through derivatization method for gas chromatography. The results obtained for the oleochemical indices for refined oil were similar to the data found on the literature. The content of polyunsaturated fatty acids (PUFA) was found of 32,78%, with 9,12% of docosahexaenoic (DHA) and 10,36% of eicosapentaenoic (EPA), regarding monounsaturated fatty acids (MUFA) content was of 30,59% in the hydrolyzed fish oil in relation to refined (20,06%). Thus, it can be concluded that the hydrolysis process used for oils from fish-waste was satisfactory on the production of absolute yield of lipids in the process and significant preservation on the percentages of EPA and DHA, interesting on the production of nutraceuticals and nutrition of aquatic animals, including shrimp in captivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master thesis presents a study on the requisite cooling of an activated sludge process in paper and pulp industry. The energy consumption of paper and pulp industry and it’s wastewater treatment plant in particular is relatively high. It is therefore useful to understand the wastewater treatment process of such industries. The activated sludge process is a biological mechanism which degrades carbonaceous compounds that are present in waste. The modified activated sludge model constructed here aims to imitate the bio-kinetics of an activated sludge process. However, due to the complicated non-linear behavior of the biological process, modelling this system is laborious and intriguing. We attempt to find a system solution first using steady-state modelling of Activated Sludge Model number 1 (ASM1), approached by Euler’s method and an ordinary differential equation solver. Furthermore, an enthalpy study of paper and pulp industry’s vital pollutants was carried out and applied to revise the temperature shift over a period of time to formulate the operation of cooling water. This finding will lead to a forecast of the plant process execution in a cost-effective manner and management of effluent efficiency. The final stage of the thesis was achieved by optimizing the steady state of ASM1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive overview of reclamation of cured rubber with special emphasis on latex reclamation is depicted in this paper. The latex industry has expanded over the years to meet the world demands for gloves, condoms, latex thread, etc. Due to the strict specifications for the products and the unstable nature of the latex as high as 15% of the final latex products are rejected. As waste latex rubber (WLR) represents a source of high-quality rubber hydrocarbon, it is a potential candidate for generating reclaimed rubber of superior quality. The role of the different components in the reclamation recipe is explained and the reaction mechanism and chemistry during reclamation are discussed in detail. Different types of reclaiming processes are described with special reference to processes, which selectively cleave the cross links in the vulcanized rubber. The state-of-the-art techniques of reclamation with special attention on latex treatment are reviewed. An overview of the latest development concerning the fundamental studies in the field of rubber recycling by means of low-molecular weight compounds is described. A mathematical model description of main-chain and crosslink scission during devulcanization of a rubber vulcanizate is also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study is on the nature, problems and prospects of the handloom industry in Kerala. The problems of the industry are mostly in the nature of low earnings of the workers, underutilisation of the existing capacity and low profit in its various sectors. The majority of the handloom co-operative societies are either dormant or facing liquidation. The income and employment of weavers are so pitiably low that they are living in utter poverty and starvation. Frequent price fluctuations of yarns, dyes and chemicals increase the cost of production and reduce the profitability. Consequently handloom fabrics are not able to compete with mill cloths and powerloom products. Accumulating the unsold stocks in the godowns of co-operative societies and with master weavers has become the practice of the day. Spinning mills in Kerala are producing only lower counts of yarns. S, handloom industry has to depend on textile mills in Tamil Nadu for higher counts of yarn. They create artificial scarcity and increase the prices exflorbitantly. Wage rates prevailing in Kerala are higher than those in Tamil Hadu. So rich master weavers are migrating to Tamil.Nadu and exporting the fabrics. under the label 'Kera1a Handlooms'. Governmental efforts to tackle the crisis by way of rebates and subsidies are found to be futile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paper industry is one of the oldest and largest industries in Kerala. Despite the developments in the industry in terms of growth in output , value added and employment generation, many of the units face grave problems. Irrespective of the size of the plant, the problems of the industry are general in nature. The problems are galore in the supply, not the demand side. Amomg the problems, the important ones are: raw material scarcity, energy deficiency and obsolete technology. Further, the industry is subject to many controls by the Government — price control, product control and raw materials control — which result in the dwindling of profits and investments. Equally important are the reservations against the industry for polluting the environment byeffluent disposal on the one hand and affecting ecological balance by depleting the existing forest on the other. Apart from the large, medium and small pulp and paper mills, there are about 30 hand made paper units in Kerala which can be categorised as village and cottage industry. Almost all of these units began at the initiative and support of Khadi and Village Industries Commission. The primary purpose of these units is employment generation, and not profit making. Currently many of these units are in the red and many others are on the verge of closure. Therefore, a separate analysis of the growth performance, and problems and prospects of the hand made paper industry has also been attempted. It is analysed separately because of the very small size of the hand made paper units