990 resultados para Task Constraints
Resumo:
La synthèse d'images dites photoréalistes nécessite d'évaluer numériquement la manière dont la lumière et la matière interagissent physiquement, ce qui, malgré la puissance de calcul impressionnante dont nous bénéficions aujourd'hui et qui ne cesse d'augmenter, est encore bien loin de devenir une tâche triviale pour nos ordinateurs. Ceci est dû en majeure partie à la manière dont nous représentons les objets: afin de reproduire les interactions subtiles qui mènent à la perception du détail, il est nécessaire de modéliser des quantités phénoménales de géométries. Au moment du rendu, cette complexité conduit inexorablement à de lourdes requêtes d'entrées-sorties, qui, couplées à des évaluations d'opérateurs de filtrage complexes, rendent les temps de calcul nécessaires à produire des images sans défaut totalement déraisonnables. Afin de pallier ces limitations sous les contraintes actuelles, il est nécessaire de dériver une représentation multiéchelle de la matière. Dans cette thèse, nous construisons une telle représentation pour la matière dont l'interface correspond à une surface perturbée, une configuration qui se construit généralement via des cartes d'élévations en infographie. Nous dérivons notre représentation dans le contexte de la théorie des microfacettes (conçue à l'origine pour modéliser la réflectance de surfaces rugueuses), que nous présentons d'abord, puis augmentons en deux temps. Dans un premier temps, nous rendons la théorie applicable à travers plusieurs échelles d'observation en la généralisant aux statistiques de microfacettes décentrées. Dans l'autre, nous dérivons une procédure d'inversion capable de reconstruire les statistiques de microfacettes à partir de réponses de réflexion d'un matériau arbitraire dans les configurations de rétroréflexion. Nous montrons comment cette théorie augmentée peut être exploitée afin de dériver un opérateur général et efficace de rééchantillonnage approximatif de cartes d'élévations qui (a) préserve l'anisotropie du transport de la lumière pour n'importe quelle résolution, (b) peut être appliqué en amont du rendu et stocké dans des MIP maps afin de diminuer drastiquement le nombre de requêtes d'entrées-sorties, et (c) simplifie de manière considérable les opérations de filtrage par pixel, le tout conduisant à des temps de rendu plus courts. Afin de valider et démontrer l'efficacité de notre opérateur, nous synthétisons des images photoréalistes anticrenelées et les comparons à des images de référence. De plus, nous fournissons une implantation C++ complète tout au long de la dissertation afin de faciliter la reproduction des résultats obtenus. Nous concluons avec une discussion portant sur les limitations de notre approche, ainsi que sur les verrous restant à lever afin de dériver une représentation multiéchelle de la matière encore plus générale.
Resumo:
The main objective of the present study is to model the gravity fields in terms of lithospheric structure below the western continental margin of India (WCMI) identify zones of crustal mass anomalies and attempt to infer the location of Ocean Continent transition in the Arabian Sea. In this study, the area starting from the western shield margin to the region covering the deep oceanic parts of the Arabian Sea which is bounded by Carlsberg and Cerg and Central Indian ridges in the south, eastern part of the Indus Cone in the west and falling between 630E and 800E longitudes, and 50N - 240N latitudes has been considered. The vast amount of seismic reflection and refraction data in the form of crustal velocities, basement configuration and crustal thicknesses available for the west coast as well as the eastern Arabian Sea has been utilized for this purpose
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
Handwriting is an acquired tool used for communication of one's observations or feelings. Factors that inuence a person's handwriting not only dependent on the individual's bio-mechanical constraints, handwriting education received, writing instrument, type of paper, background, but also factors like stress, motivation and the purpose of the handwriting. Despite the high variation in a person's handwriting, recent results from different writer identification studies have shown that it possesses sufficient individual traits to be used as an identification method. Handwriting as a behavioral biometric has had the interest of researchers for a long time. But recently it has been enjoying new interest due to an increased need and effort to deal with problems ranging from white-collar crime to terrorist threats. The identification of the writer based on a piece of handwriting is a challenging task for pattern recognition. The main objective of this thesis is to develop a text independent writer identification system for Malayalam Handwriting. The study also extends to developing a framework for online character recognition of Grantha script and Malayalam characters
Resumo:
Unit Commitment Problem (UCP) in power system refers to the problem of determining the on/ off status of generating units that minimize the operating cost during a given time horizon. Since various system and generation constraints are to be satisfied while finding the optimum schedule, UCP turns to be a constrained optimization problem in power system scheduling. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision making task and an efficient Reinforcement Learning solution is formulated considering minimum up time /down time constraints. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
Unit commitment is an optimization task in electric power generation control sector. It involves scheduling the ON/OFF status of the generating units to meet the load demand with minimum generation cost satisfying the different constraints existing in the system. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision task and Reinforcement Learning solution is formulated through one efficient exploration strategy: Pursuit method. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
Cancer treatment is most effective when it is detected early and the progress in treatment will be closely related to the ability to reduce the proportion of misses in the cancer detection task. The effectiveness of algorithms for detecting cancers can be greatly increased if these algorithms work synergistically with those for characterizing normal mammograms. This research work combines computerized image analysis techniques and neural networks to separate out some fraction of the normal mammograms with extremely high reliability, based on normal tissue identification and removal. The presence of clustered microcalcifications is one of the most important and sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].WT based techniques are applied on the remaining mammograms, those are obviously abnormal, to detect possible microcalcifications. The goal of this work is to improve the detection performance and throughput of screening-mammography, thus providing a ‘second opinion ‘ to the radiologists. The state-of- the- art DWT computation algorithms are not suitable for practical applications with memory and delay constraints, as it is not a block transfonn. Hence in this work, the development of a Block DWT (BDWT) computational structure having low processing memory requirement has also been taken up.
Resumo:
In the tropics, a large number of smallholder farms contribute significantly to food security by raising pigs and poultry for domestic consumption and for sale on local markets. The high cost and, sometimes, the lack of availability of commercial protein supplements is one of the main limitations to efficient animal production by smallholders. Locally-grown forages and grain legumes offer ecological benefits such as nitrogen fixation, soil improvement, and erosion control which contribute to improve cropping efficiency. Besides these agronomical assets, they can be used as animal feeds in mixed farming systems. In this paper we review options to include locally-grown forages and grain legumes as alternative protein sources in the diets of pigs and poultry in order to reduce farmers’ dependence on externally-purchased protein concentrates. The potential nutritive value of a wide range of forages and grain legumes is presented and discussed. The influence of dietary fibre and plant secondary metabolites contents and their antinutritive consequences on feed intake, digestive processes and animal performances are considered according to the varying composition in those compounds of the different plant species and cultivars covered in this review. Finally, methods to overcome the antinutritive attributes of the plant secondary metabolites using heat, chemical or biological treatment are reviewed regarding their efficiency and their suitability in low input farming systems.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
In dieser Dissertation werden Methoden zur optimalen Aufgabenverteilung in Multirobotersystemen (engl. Multi-Robot Task Allocation – MRTA) zur Inspektion von Industrieanlagen untersucht. MRTA umfasst die Verteilung und Ablaufplanung von Aufgaben für eine Gruppe von Robotern unter Berücksichtigung von operativen Randbedingungen mit dem Ziel, die Gesamteinsatzkosten zu minimieren. Dank zunehmendem technischen Fortschritt und sinkenden Technologiekosten ist das Interesse an mobilen Robotern für den Industrieeinsatz in den letzten Jahren stark gestiegen. Viele Arbeiten konzentrieren sich auf Probleme der Mobilität wie Selbstlokalisierung und Kartierung, aber nur wenige Arbeiten untersuchen die optimale Aufgabenverteilung. Da sich mit einer guten Aufgabenverteilung eine effizientere Planung erreichen lässt (z. B. niedrigere Kosten, kürzere Ausführungszeit), ist das Ziel dieser Arbeit die Entwicklung von Lösungsmethoden für das aus Inspektionsaufgaben mit Einzel- und Zweiroboteraufgaben folgende Such-/Optimierungsproblem. Ein neuartiger hybrider Genetischer Algorithmus wird vorgestellt, der einen teilbevölkerungbasierten Genetischen Algorithmus zur globalen Optimierung mit lokalen Suchheuristiken kombiniert. Zur Beschleunigung dieses Algorithmus werden auf die fittesten Individuen einer Generation lokale Suchoperatoren angewendet. Der vorgestellte Algorithmus verteilt die Aufgaben nicht nur einfach und legt den Ablauf fest, sondern er bildet auch temporäre Roboterverbünde für Zweiroboteraufgaben, wodurch räumliche und zeitliche Randbedingungen entstehen. Vier alternative Kodierungsstrategien werden für den vorgestellten Algorithmus entworfen: Teilaufgabenbasierte Kodierung: Hierdurch werden alle möglichen Lösungen abgedeckt, allerdings ist der Suchraum sehr groß. Aufgabenbasierte Kodierung: Zwei Möglichkeiten zur Zuweisung von Zweiroboteraufgaben wurden implementiert, um die Effizienz des Algorithmus zu steigern. Gruppierungsbasierte Kodierung: Zeitliche Randbedingungen zur Gruppierung von Aufgaben werden vorgestellt, um gute Lösungen innerhalb einer kleinen Anzahl von Generationen zu erhalten. Zwei Umsetzungsvarianten werden vorgestellt. Dekompositionsbasierte Kodierung: Drei geometrische Zerlegungen wurden entworfen, die Informationen über die räumliche Anordnung ausnutzen, um Probleme zu lösen, die Inspektionsgebiete mit rechteckigen Geometrien aufweisen. In Simulationsstudien wird die Leistungsfähigkeit der verschiedenen hybriden Genetischen Algorithmen untersucht. Dazu wurde die Inspektion von Tanklagern einer Erdölraffinerie mit einer Gruppe homogener Inspektionsroboter als Anwendungsfall gewählt. Die Simulationen zeigen, dass Kodierungsstrategien, die auf der geometrischen Zerlegung basieren, bei einer kleinen Anzahl an Generationen eine bessere Lösung finden können als die anderen untersuchten Strategien. Diese Arbeit beschäftigt sich mit Einzel- und Zweiroboteraufgaben, die entweder von einem einzelnen mobilen Roboter erledigt werden können oder die Zusammenarbeit von zwei Robotern erfordern. Eine Erweiterung des entwickelten Algorithmus zur Behandlung von Aufgaben, die mehr als zwei Roboter erfordern, ist möglich, würde aber die Komplexität der Optimierungsaufgabe deutlich vergrößern.
Resumo:
In the big cities of Pakistan, peri-urban dairy production plays an important role for household income generation and the supply of milk and meat to the urban population. On the other hand, milk production in general, and peri-urban dairy production in particular, faces numerous problems that have been well known for decades. Peri-urban dairy producers have been especially neglected by politicians as well as non-government-organizations (NGOs). Against this background, a study in Pakistan’s third largest city, Faisalabad (Punjab Province), was carried out with the aims of gathering basic information, determining major constraints and identifying options for improvements of the peri-urban milk production systems. For data collection, 145 peri-urban households (HH) engaged in dairy production were interviewed face to face using a structured and pretested questionnaire with an interpreter. For analyses, HH were classified into three wealth groups according to their own perception. Thus, 38 HH were poor, 95 HH well off and 12 HH rich (26.2%, 65.5% and 8.3%, respectively). The richer the respondents perceived their HH, the more frequently they were actually in possession of high value HH assets like phones, bank accounts, motorbikes, tractors and cars. Although there was no difference between the wealth groups with respect to the number of HH members (about 10, range: 1 to 23), the educational level of the HH heads differed significantly: on average, heads of poor HH had followed education for 3 years, compared to 6 years for well off HH and 8 years for rich HH. About 40% of the poor and well off HH also had off-farm incomes, while the percentage was much higher - two thirds (67%) - for the rich HH. The majority of the HH were landless (62%); the rest (55 HH) possessed agricultural land from 0.1 to 10.1 ha (average 2.8 ha), where they were growing green fodder: maize, sorghum and pearl millet in summer; berseem, sugar cane and wheat were grown in winter. Dairy animals accounted for about 60% of the herds; the number of dairy animals per HH ranged from 2 to 50 buffaloes (Nili-Ravi breed) and from 0 to 20 cows (mostly crossbred, also Sahiwal). About 37% (n=54) of the HH did not keep cattle. About three quarters of the dairy animals were lactating. The majority of the people taking care of the animals were family workers; 17.3% were hired labourers (exclusively male), employed by 11 rich and 32 well off HH; none of the poor HH employed workers, but the percentages were 33.7% for the well off and 91.7% for the rich HH. The total number of workers increased significantly with increasing wealth (poor: 2.0; well off:2.5; rich: 3.4). Overall, 69 female labourers were recorded, making up 16.8% of employed workers and one fourth of the HH’s own labourers. Apparently, their only duty was to clean the animals´ living areas; only one of them was also watering and showering the animals. Poor HH relied more on female workers than the other two groups: 27.1% of the workers of poor HH were women, but only 14.8% and 6.8% of the labour force of well off and rich HH were female. Two thirds (70%) of the HH sold milk to dhodis (middlemen) and one third (35%) to neighbours; three HH (2%) did doorstep delivery and one HH (1%) had its own shop. The 91 HH keeping both species usually sold mixed milk (97%). Clients for mixed and pure buffalo milk were dhodis (78%, respectively 59%) and neighbours (28%, respectively 47%). The highest milk prices per liter (Pakistani Rupees, 100 PKR @ 0.8 Euro) were paid by alternative clients (44 PKR; 4 HH), followed by neighbours (40 PKR, 50 HH); dhodis paid lower prices (36 PKR, 99 HH). Prices for pure buffalo and mixed milk did not differ significantly. However, HH obtaining the maximum price from the respective clients for the respective type of milk got between 20% (mixed milk, alternative clients) and 68% (mixed milk, dhodi) more than HH fetching the minimum price. Some HH (19%) reported 7% higher prices for the current summer than the preceding winter. Amount of milk sold and distance from the HH to the city center did not influence milk prices. Respondents usually named problems that directly affected their income and that were directly and constantly visible to them, such as high costs, little space and fodder shortages. Other constraints that are only influencing their income indirectly, e.g. the relatively low genetic potential of their animals due to neglected breeding as well as the short- and long-term health problems correlated with imbalanced feeding and insufficient health care, were rarely named. The same accounts for problems accompanying improper dung management (storage, disposal, burning instead of recycling) for the environment and human health. Most of the named problems are linked to each other and should be addressed within the context of the entire system. Therefore, further research should focus on systematic investigations and improvement options, taking a holistic and interdisciplinary approach instead of only working in single fields. Concerted efforts of dairy farmers, researchers, NGOs and political decision makers are necessary to create an economic, ecological and social framework that allows dairy production to serve the entire society. For this, different improvement options should be tested in terms of their impact on environment and income of the farmers, as well as feasibility and sustainability in the peri-urban zones of Faisalabad.
Resumo:
Das Mahafaly Plateau im südwestlichen Madagaskar ist gekennzeichnet durch raue klimatische Bedingungen, vor allem regelmäßige Dürren und Trockenperioden, geringe Infrastruktur, steigende Unsicherheit, hohe Analphabetenrate und regelmäßige Zerstörung der Ernte durch Heuschreckenplagen. Da 97% der Bevölkerung von der Landwirtschaft abhängen, ist eine Steigerung der Produktivität von Anbausystemen die Grundlage für eine Verbesserung der Lebensbedingungen und Ernährungssicherheit in der Mahafaly Region. Da wenig über die Produktivität von traditionellen extensiven und neu eingeführten Anbaumethoden in diesem Gebiet bekannt ist, waren die Zielsetzungen der vorliegenden Arbeit, die limitierenden Faktoren und vielversprechende alternative Anbaumethoden zu identifizieren und diese unter Feldbedingungen zu testen. Wir untersuchten die Auswirkungen von lokalem Viehmist und Holzkohle auf die Erträge von Maniok, der Hauptanbaufrucht der Region, sowie die Beiträge von weiteren Faktoren, die im Untersuchungsgebiet ertragslimitierend sind. Darüber hinaus wurde in der Küstenregion das Potenzial für bewässerten Gemüseanbau mit Mist und Holzkohle untersucht, um zu einer Diversifizierung von Einkommen und Ernährung beizutragen. Ein weiterer Schwerpunkt dieser Arbeit war die Schätzung von Taubildung und deren Beitrag in der Jahreswasserbilanz durch Testen eines neu entworfenen Taumessgerätes. Maniok wurde über drei Jahre und in drei Versuchsfeldern in zwei Dörfern auf dem Plateau angebaut, mit applizierten Zeburindermistraten von 5 und 10 t ha-1, Holzkohleraten von 0,5 und 2 t ha-1 und Maniokpflanzdichten von 4500 Pflanzen ha-1. Maniokknollenerträge auf Kontrollflächen erreichten 1 bis 1,8 t Trockenmasse (TM) ha-1. Mist führte zu einer Knollenertragssteigerung um 30 - 40% nach drei Jahren in einem kontinuierlich bewirtschafteten Feld mit geringer Bodenfruchtbarkeit, hatte aber keinen Effekt auf den anderen Versuchsfeldern. Holzkohle hatte keinen Einfluss auf Erträge über den gesamten Testzeitraum, während die Infektion mit Cassava-Mosaikvirus zu Ertragseinbußen um bis zu 30% führte. Pflanzenbestände wurden felder-und jahresübergreifend um 4-54% des vollen Bestandes reduziert, was vermutlich auf das Auftreten von Trockenperioden und geringe Vitalität von Pflanzmaterial zurückzuführen ist. Karotten (Daucus carota L. var. Nantaise) und Zwiebeln (Allium cepa L. var. Red Créole) wurden über zwei Trockenzeiten mit lokal erhältlichem Saatgut angebaut. Wir testeten die Auswirkungen von lokalem Rindermist mit einer Rate von 40 t ha-1, Holzkohle mit einer Rate von 10 t ha-1, sowie Beschattung auf die Gemüseernteerträge. Lokale Bewässerungswasser hatte einen Salzgehalt von 7,65 mS cm-1. Karotten- und Zwiebelerträge über Behandlungen und Jahre erreichten 0,24 bis 2,56 t TM ha-1 beziehungsweise 0,30 bis 4,07 DM t ha-1. Mist und Holzkohle hatten keinen Einfluss auf die Erträge beider Kulturen. Beschattung verringerte Karottenerträge um 33% im ersten Jahr, während sich die Erträge im zweiten Jahr um 65% erhöhten. Zwiebelerträge wurden unter Beschattung um 148% und 208% im ersten und zweiten Jahr erhöht. Salines Bewässerungswasser sowie Qualität des lokal verfügbaren Saatgutes reduzierten die Keimungsraten deutlich. Taubildung im Küstendorf Efoetsy betrug 58,4 mm und repräsentierte damit 19% der Niederschlagsmenge innerhalb des gesamten Beobachtungszeitraum von 18 Monaten. Dies weist darauf hin, dass Tau in der Tat einen wichtigen Beitrag zur jährlichen Wasserbilanz darstellt. Tageshöchstwerte erreichten 0,48 mm. Die getestete Tauwaage-Vorrichtung war in der Lage, die nächtliche Taubildung auf der metallischen Kondensationsplatte zuverlässig zu bestimmen. Im abschließenden Kapitel werden die limitierenden Faktoren für eine nachhaltige Intensivierung der Landwirtschaft in der Untersuchungsregion diskutiert.
Resumo:
We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.
Resumo:
This report presents a set of representations methodologies and tools for the purpose of visualizing, analyzing and designing functional shapes in terms of constraints on motion. The core of the research is an interactive computational environment that provides an explicit visual representation of motion constraints produced by shape interactions, and a series of tools that allow for the manipulation of motion constraints and their underlying shapes for the purpose of design.
Resumo:
The transformation from high level task specification to low level motion control is a fundamental issue in sensorimotor control in animals and robots. This thesis develops a control scheme called virtual model control which addresses this issue. Virtual model control is a motion control language which uses simulations of imagined mechanical components to create forces, which are applied through joint torques, thereby creating the illusion that the components are connected to the robot. Due to the intuitive nature of this technique, designing a virtual model controller requires the same skills as designing the mechanism itself. A high level control system can be cascaded with the low level virtual model controller to modulate the parameters of the virtual mechanisms. Discrete commands from the high level controller would then result in fluid motion. An extension of Gardner's Partitioned Actuator Set Control method is developed. This method allows for the specification of constraints on the generalized forces which each serial path of a parallel mechanism can apply. Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing a simple set of virtual components has successfully compelled the robot to walk eight consecutive steps.