995 resultados para TUMOR-STROMAL INTERACTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy of melanoma is aimed to mobilize cytolytic CD8+ T cells playing a central role in protective immunity. Despite numerous clinical vaccine trials, only few patients exhibited strong antigen-specific T-cell activation, stressing the need to improve vaccine strategies. For a rational development, we propose to focus on molecularly defined vaccine components, and evaluate their immunogenicity with highly reproducible and standardized methods for ex vivo immune monitoring. Careful immunogenicity comparison of vaccine formulations in phase I/II studies allow to select optimized vaccines for subsequent clinical efficacy testing in large scale phase III trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many patients develop tumor antigen-specific T cell responses detectable in peripheral blood mononuclear cells (PBMCs) following cancer vaccine. However, measurable tumor regression is observed in a limited number of patients receiving cancer vaccines. There is a need to re-evaluate systemically the immune responses induced by cancer vaccines. Here, we established animal models targeting two human cancer/testis antigens, NY-ESO-1 and MAGE-A4. Cytotoxic T lymphocyte (CTL) epitopes of these antigens were investigated by immunizing BALB/c mice with plasmids encoding the entire sequences of NY-ESO-1 or MAGE-A4. CD8(+) T cells specific for NY-ESO-1 or MAGE-A4 were able to be detected by ELISPOT assays using antigen presenting cells pulsed with overlapping peptides covering the whole protein, indicating the high immunogenicity of these antigens in mice. Truncation of these peptides revealed that NY-ESO-1-specific CD8(+) T cells recognized D(d)-restricted 8mer peptides, NY-ESO-181-88. MAGE-A4-specific CD8(+) T cells recognized D(d)-restricted 9mer peptides, MAGE-A4265-273. MHC/peptide tetramers allowed us to analyze the kinetics and distribution of the antigen-specific immune responses, and we found that stronger antigen-specific CD8(+) T cell responses were required for more effective anti-tumor activity. Taken together, these animal models are valuable for evaluation of immune responses and optimization of the efficacy of cancer vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomerase is a ribonucleoprotein complex responsible for the maintenance of the length of the telomeres during cell division, which is active in germ-line cells as well as in the vast majority of tumors but not in most normal tissues. The wide expression of the human telomerase catalytic subunit (hTERT) in tumors makes it an interesting candidate vaccine for cancer. hTERT-derived peptide 540-548 (hTERT(540)) has been recently shown to be recognized in an HLA-A*0201-restricted fashion by T cell lines derived from peptide-stimulated peripheral blood mononuclear cells (PBMC) from healthy donors. As a first step to the inclusion of this peptide in immunotherapy clinical trials, it is crucial to assess hTERT(540)-specific T cell reactivity in cancer patients as well as the ability of hTERT-specific CD8(+) T lymphocytes to recognize and lyse hTERT-expressing target cells. Here, we have analyzed the CD8(+) T cell response to peptide hTERT(540) in HLA-A*0201 melanoma patients by using fluorescent HLA-A*0201/hTERT(540) peptide tetramers. HLA-A*0201/hTERT(540) tetramer(+) CD8(+) T cells were readily detected in peptide-stimulated PBMC from a significant proportion of patients and could be isolated by tetramer-guided cell sorting. hTERT(540)-specific CD8(+) T cells were able to specifically recognize HLA-A*0201 cells either pulsed with peptide or transiently transfected with a minigene encoding the minimal epitope. In contrast, they failed to recognize hTERT-expressing HLA-A*0201(+) target cells. Furthermore, in vitro proteasome digestion studies revealed inadequate hTERT processing. Altogether, these results raise questions on the use of hTERT(540) peptide for cancer immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the clinical potential of diffusion-weighted MR imaging with apparent diffusion coefficient (ADC) mapping for the assessment of gastrointestinal stromal tumor (GIST) response to targeted therapy in comparison with 18F-FDG PET/CT. Methods and materials: Five patients (3W/2M, aged 56 ± 13 y) with metastatic GIST underwent both a 18F-FDG PET/CT (Discovery LS, GE Healthcare) and a MRI (VIBE T1 Gd, DWI [b = 50,300,600] and ADC mapping) before and after change in therapy. Exams were first analyzed blindly, then PET/CT images were coregistered to T1 Gd MR images for lesion detection. SUVmax and ADC were measured for the six largest lesions on MRI. The relationship between SUVmax and ADC was analyzed using Spearman's correlation. Results: Altogether, 24 lesions (15 hepatic and 9 non-hepatic) were analyzed on both modalities. Three PET/CT lesions (12.5%) were initially not considered on ADC and 4 lesions on the second PET/CT were excluded because of hepatic vascular activity spillover. SUVmax decreased from 7.2 ± 7.7 g/mL to 5.9 ± 5.9 g/mL (P = 0.53) and ADC increased from 1.2x10-3 mm2/s ± 0.4 to 1.4x10-3 mm2/s ± 0.4 (P = 0.07). There was a significant association between SUVmax decrease and ADC increase (rho= -0.64, P = 0.004). Conclusion: Changes in ADC from diffusion-weighted MRI reflect response of 18F-FDG-avid GIST to therapy. The exact diagnostic value of DWI needs to be investigated further, as well as the effect of lesion size and time under therapy before imaging. Furthermore, the proven association between SUVmax and ADC may be useful for the assessment of treatment response in 18F-FDG non-avid GIST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University of Aarhus, Denmark, from 2010 to 2012. Reprogramming of cellular metabolism is a key process during tumorigenesis. This metabolic adaptation is required in order to sustain the energetic and anabolic demands of highly proliferative cancer cells. Despite known for decades (Warburg effect), the precise molecular mechanisms regulating this switch remained unexplored. We have identify SIRT6 as a novel tumor suppressor that regulates aerobic glycolysis in cancer cells. Importantly, loss of this sirtuin in non-transformed cells leads to tumor formation without activation of known oncogenes, indicating that SIRT6 functions as a first-hit tumor suppressor. Furthermore, transformed SIRT6-deficient cells display increased glycolysis and tumor growth in vivo, suggesting that SIRT6 plays a role in both establishment and maintenance of cancer. We provide data demonstrating that the glycolytic switch towards aerobic glycolysis is the main driving force for tumorigenesis in SIRT6-deficient cells, since inhibition of glycolysis in these cells abrogates their tumorigenic potential. By using a conditional SIRT6-targeted allele, we show that deletion of SIRT6 in vivo increases the number, size and aggressiveness of tumors, thereby confirming a role of SIRT6 as a tumor suppressor in vivo. In addition, we describe a new role for SIRT6 as a regulator of ribosome biogenesis by co-repressing MYC transcriptional activity. Therefore, by repressing glycolysis and ribosomal gene expression, SIRT6 inhibits tumor establishment and progression. Further validating these data, SIRT6 is selectively downregulated in several human cancers, and expression levels of SIRT6 predict both prognosis and tumor-free survival rates, highlighting SIRT6 as a critical modulator of cancer metabolism. Our results provide a potential Achilles’ hill to tackle cancer metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the School of Computing of the University of Dundee, United Kingdom, from 2010 to 2012. This document is a scientific report of the work done, main results, publications and accomplishment of the objectives of the 2-year post-doctoral research project with reference number BP-A 00239. The project has addressed the topic of older people (60+) and Information and Communication Technologies (ICT), which is a topic of growing social and research interest, from a Human-Computer Interaction perspective. Over a 2-year period (June 2010-June 2012), we have conducted classical ethnography of ICT use in a computer clubhouse in Scotland, addressing interaction barriers and strategies, social sharing practices in Social Network Sites, and ICT learning, and carried out rapid ethnographical studies related to geo-enabled ICT and e-government services towards supporting independent living and active ageing. The main results have provided a much deeper understanding of (i) the everyday use of Computer-Mediated Communication tools, such as video-chats and blogs, and its evolution as older people’s experience with ICT increases over time, (ii) cross-cultural aspects of ICT use in the north and south of Europe, (iii) the relevance of cognition over vision in interacting with geographical information and a wide range of ICT tools, despite common stereotypes (e.g. make things bigger), (iv) the important relationship offline-online to provide older people with socially inclusive and meaningful eservices for independent living and active ageing, (v) how older people carry out social sharing practices in the popular YouTube, (vi) their user experiences and (vii) the challenges they face in ICT learning and the strategies they use to become successful ICT learners over time. The research conducted in this project has been published in 17 papers, 4 in journals – two of which in JCR, 5 in conferences, 4 in workshops and 4 in magazines. Other public output consists of 10 invited talks and seminars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Invasion and migration are key processes of glioblastoma and are tightly linked to tumor recurrence. Integrin inhibition using cilengitide has shown synergy with chemotherapy and radiotherapy in vitro and promising activity in recurrent glioblastoma. This multicenter, phase I/IIa study investigated the efficacy and safety of cilengitide in combination with standard chemoradiotherapy in newly diagnosed glioblastoma. Patients and Methods: Patients (age >= 18 to >= 70 years) were treated with cilengitide (500 mg) administered twice weekly intravenously in addition to standard radiotherapy with concomitant and adjuvant temozolomide. Treatment was continued until disease progression or for up to 35 weeks. The primary end point was progression-free survival (PFS) at 6 months. Results: Fifty-two patients ( median age, 57 years; 62% male) were included. Six- and 12-month PFS rates were 69% (95% CI, 54% to 80%) and 33% ( 95% CI, 21% to 46%). Median PFS was 8 months ( 95% CI, 6.0 to 10.7 months). Twelve- and 24-month overall survival ( OS) rates were 68% ( 95% CI, 53% to 79%) and 35% ( 95% CI, 22% to 48%). Median OS was 16.1 months ( 95% CI, 13.1 to 23.2 months). PFS and OS were longer in patients with tumors with O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (13.4 and 23.2 months) versus those without MGMT promoter methylation (3.4 and 13.1 months). The combination of cilengitide with temozolomide and radiotherapy was well tolerated, with no additional toxicity. No pharmacokinetic interactions between temozolomide and cilengitide were identified. Conclusion: Compared with historical controls, the addition of concomitant and adjuvant cilengitide to standard chemoradiotherapy demonstrated promising activity in patients with glioblastoma with MGMT promoter methylation. J Clin Oncol 28:2712-2718. (C) 2010 by American Society of Clinical Oncology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise identification of regulatory T cells is crucial in the understanding of their role in human cancers. Here, we analyzed the frequency and phenotype of regulatory T cells (Tregs), in both healthy donors and melanoma patients, based on the expression of the transcription factor FOXP3, which, to date, is the most reliable marker for Tregs, at least in mice. We observed that FOXP3 expression is not confined to human CD25(+/high) CD4(+) T cells, and that these cells are not homogenously FOXP3(+). The circulating relative levels of FOXP3(+) CD4(+) T cells may fluctuate close to 2-fold over a short period of observation and are significantly higher in women than in men. Further, we showed that FOXP3(+) CD4(+) T cells are over-represented in peripheral blood of melanoma patients, as compared to healthy donors, and that they are even more enriched in tumor-infiltrated lymph nodes and at tumor sites, but not in normal lymph nodes. Interestingly, in melanoma patients, a significantly higher proportion of functional, antigen-experienced FOXP3(+) CD4(+) T was observed at tumor sites, compared to peripheral blood. Together, our data suggest that local accumulation and differentiation of Tregs is, at least in part, tumor-driven, and illustrate a reliable combination of markers for their monitoring in various clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-antigen Melan-A/MART-1 is frequently involved in T-cell responses against malignant melanoma. The use of fluorescent tetramers incorporating the immunodominant Melan-A/MART-1 peptide has provided new insights into HLA-A2-restricted T-cell responses against this antigen in cancer patients and in healthy individuals. Direct evidence has been provided that a large Melan-A/MART-1-specific CD8 T-cell pool is generated during thymic selection. Although several other examples of naive self-peptide-specific T-cell repertoires are known, this is the only one directly accessible to analysis in healthy individuals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Vaccines targeting tumor associated antigens are in development for bladder cancer. Most of these cancers are nonmuscle invasive at diagnosis and confined in the mucosa and submucosa. However, to our knowledge how vaccination may induce the regression of tumors at such mucosal sites has not been examined previously. We compared different immunization routes for the ability to induce vaccine specific antitumor CD8 T cells in the bladder and bladder tumor regression in mice. MATERIALS AND METHODS: In the absence of a murine bladder tumor model expressing a tumor antigen relevant for human use we established an orthotopic model expressing the HPV-16 tumor antigen E7 as a model. We used an adjuvant E7 polypeptide to induce CD8 T cell mediated tumor regression. RESULTS: Subcutaneous and intravaginal but not intranasal vaccination induced a high number of TetE7(+)CD8(+) T cells in the bladder as well as bladder tumor regression. The entry of vaccine specific T cells in the bladder was not the only key since persistent regression of established bladder tumors by intravaginal or subcutaneous immunization was associated with tumor infiltration of total CD4 and CD8 T cells. This resulted in an increase in TetE7(+)CD8(+) T cells and a decrease in T regulatory cells, leading to an increased number of effector interferon-γ secreting vaccine specific CD8 T cells in the regressing bladder tumor. CONCLUSIONS: These data show that immunization routes should be tailored to each mucosal tumor site. Subcutaneous or intravaginal vaccination may be of additional value to treat patients with bladder cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of tumor necrosis factor alpha (TNFalpha) in cancer therapy is limited by its short circulatory half-life and its severe systemic side effects. To overcome these limitations, we evaluated the capability of a bispecific antibody (BAb) directed against carcinoembryonic antigen (CEA) and human TNFalpha to target this cytokine in tumors. A BAb was constructed by coupling the Fab' fragments from an anti-CEA monoclonal antibody (MAb) to the Fab' fragments from an anti-TNFalpha MAb via a stable thioether linkage. The double specificity of the BAb for CEA and TNFalpha was demonstrated using a BIAcoreTM two-step analysis. The affinity constants of the BAb for CEA immobilized on a sensor chip and for soluble TNFalpha added to the CEA-BAb complex were as high as those of the parental MAbs (1.7 x 10(9) M-1 and 6.6 x 10(8) M-1, respectively). The radiolabeled 125I-labeled BAb retained high immunoreactivity with both CEA and TNFalpha immobilized on a solid phase. In nude mice xenografted with the human colorectal carcinoma T380, the 125I-labeled BAb showed a tumor localization and biodistribution comparable to that of 131I-labeled anti-CEA parental F(ab')2 with 25-30% of the injected dose (ID)/g tumor at 24 h and 20% ID/g tumor at 48 h. To target TNFalpha to the tumor, a two-step i.v. injection protocol was used first, in which a variable dose of 125I-labeled BAb was injected, followed 24 or 48 h later by a constant dose of 131I-labeled TNFalpha (1 microg). Mice pretreated with 3 microg of BAb and sacrificed 2, 4, 6, or 8 h after the injection of TNFalpha showed a 1.5- to 2-fold increased concentration of 131I-labeled TNFalpha in the tumor as compared to control mice, which received TNFalpha alone. With a higher dose of BAb (25 microg), mice showed a better targeting of TNFalpha with a 3.2-fold increased concentration of 131I-labeled TNFalpha in the tumor: 9.3% versus 2.9% ID/g in control mice 6 h after TNFa injection. In a one-step injection protocol using a premixed BAb-TNFalpha preparation, similar results were obtained 6 h postinjection (3.5-fold increased TNFalpha tumor concentration). A longer retention time of TNFalpha was observed leading to an 8.1-fold increased concentration of TNFalpha in the tumor 14 h postinjection (4.4 versus 0.5% ID/g tumor for BAb-treated and control mice, respectively). These results show that our BAb is able, first, to localize in a human colon carcinoma and, there, to immunoabsorb the i.v.-injected TNFalpha, leading to its increased concentration at the tumor site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The B cell-activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co-stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co-stimulatory function. BAFF is produced by antigen-presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up-regulates BAFF production in these cells. A low level of BAFF transcription, up-regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the APC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.