997 resultados para TRANSIENT ABSORPTION


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, the coupling of fast transient kinetic switching and the use of an isotopically labelled reactant (15NO) has allowed detailed analysis of the evolution of all the products and reactants involved in the regeneration of a NOx storage reduction (NSR) material. Using realistic regeneration times (ca. 1 s) for Pt, Rh and Pt/Rh-containing Ba/Al2O3 catalysts we have revealed an unexpected double peak in the evolution of nitrogen. The first peak occurred immediately on switching from lean to rich conditions, while the second peak started at the point at which the gases switched from rich to lean. The first evolution of nitrogen occurs as a result of the fast reaction between H2 and/or CO and NO on reduced Rh and/or Pt sites. The second N2 peak which occurs upon removal of the rich phase can be explained by reaction of stored ammonia with stored NOx, gas phase NOx or O2. The ammonia can be formed either by hydrolysis of isocyanates or by direct reaction of NO and H2.

The study highlights the importance of the relative rates of regeneration and storage in determining the overall performance of the catalysts. The performance of the monometallic 1.1%Rh/Ba/Al2O3 catalyst at 250 and 350 °C was found to be dependent on the rate of NOx storage, since the rate of regeneration was sufficient to remove the NOx stored in the lean phase. In contrast, for the monometallic 1.6%Pt/Ba/Al2O3 catalyst at 250 °C, the rate of regeneration was the determining factor with the result that the amount of NOx stored on the catalyst deteriorated from cycle to cycle until the amount of NOx stored in the lean phase matched the NOx reduced in the rich phase. On the basis of the ratio of exposed metal surface atoms to total Ba content, the monometallic 1.6%Pt/Ba/Al2O3 catalyst outperformed the Rh-containing catalysts at 250 and 350 °C even when CO was used as a reductant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic and bonding properties of nitrogenated carbon nanotubes (N-CNTs) exposed to chlorine plasma were investigated using C and N K-edge x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy (SPEM). The C and N K-edge XANES spectra of chlorine-treated N-CNTs consistently reveal the formation of pyridinelike N-CNTs by the observation of 1s ->pi(*)(e(2u)) antibonding and 1s ->pi(*)(b(2g)) bonding states. The valence-band photoemission spectra obtained from SPEM images indicate that chlorination of the nanotubes enhances the C-N bonding. First-principles calculations of the partial densities of states in conjunction with C K-edge XANES data identify the presence of C-Cl bonding in chlorine treated N-CNTs. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of electrode kinetic parameters for electrochemical couples in room-temperature ionic liquids (RTILs) is currently an area of considerable interest. Electrochemists typically measure electrode kinetics in the limits of either transient planar or steady-state convergent diffusion for which the voltammetic response is well understood. In this paper we develop a general method allowing the extraction of this kinetic data in the region where the diffusion is intermediate between the planar and convergent limits, such as is often encountered in RTILs using microelectrode voltammetry. A general working surface is derived, allowing the inference of Butler-Volmer standard electrochemical rate constants for the peak-to-peak potential separation in a cyclic voltammogram as a function of voltage scan rate. The method is applied to the case of the ferrocene/ferrocenium couple in [C(2)mim][N(Tf)(2)] and [C(4)mim][N(Tf)(2)].