950 resultados para TIN OXIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The species [{Sn(C2H2iPr3-2,4,6)2}3] has been obtained in a simple, essentially quantitative, synthesis from SnCl2 and ArLi in diethyl ether at low temperature. The crystal structure analysis confirms the trimeric nature of the molecular units but reveals some unusual features. The crystal contains the unusual feature of an asymmetric unit that consists of three units of [{SnAr2}3] in P21/c; the molecular unit is a scalene triangle, showing high consistency between the three molecules, in contrast to analogous trimeric species of silicon or germanium. The SnSn bonds are lengthened (average value 2.942 Å) owing to steric crowding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerial oxidation of the novel homocyclic tetratin species [{SnAr2}3SnArBr] (1) [1] (Ar  C6H3Et2-2,6) affords the tritin heterocycle [O{Sn(C6H3Et2-2,6)2}3] (2), which has been crystallographically characterised; 2 is the first reported oxatristannacyclobutane, and the first heterocyclic tin species having both tintin and tinheteroatom bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monomeric tin(II) species SnR2{R = C(SiMe3)2C5H4N-2} reacts with [Os3(H)2(CO)10] in hexane to give [Os3(µ-H)SnR(CO)10]1 quantitatively; 1 is the first formal stannyne complex of the triosmium nucleus, in which the picoline nitrogen is coordinated to the tin atom, and which is itself also reactive, being a potential precursor to high nuclearity SnOs clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound is the first µ-η2-peroxodimetallic species to be characterised for a main group metal, possessing a long peroxo O–O bond, and large C–Sn–C angles, and is an unexpected product from the oxidation of [SnR2][R = CH(SiMe3)2], with a structure analogous to an organic ozonide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stannylene [SnR2] (R = CH(SiMe3)2) reacts in different ways with the three dodecacarbonyls of the iron triad: [Fe3(CO)12] gives [Fe2(CO)8(μ-SnR2)], [Ru3(CO)12] gives the planar pentametallic cluster [Ru3(CO)10(μ-SnR2)2], for which a full structural analysis is reported, while [Os3(CO)12] fails to react. Different products are also obtained from three nitrile derivatives: [Fe3-(CO)11(MeCN)] gives [Fe2(CO)6(μ-SnR2)2], which has a structure significantly different from that of known Fe2Sn2 clusters, [Ru3(CO)10(MeCN)2] gives the pentametallic cluster described above, while [Os3(CO)10(MeCN)2] gives the isostructural osmium analogue, which shows the unusual feature of a CO group bridging two osmium atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster expansion of [Os3H2(CO)10] with [SnR2][R = CH(SiMe3)2] take place in high yield to give [Os3SnH2(CO)10R2], the first closed triosmium–main-group metal cluster to be structurally characterized; a novel feature is the presence of a hydrogen atom bridging the tin atom and one of the osmium atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of Li(CPhCMe2) with SnCl4 or CrCl3·3thf (thf = tetrahydrofuran) affords the isoleptic compounds Sn(CPhCMe2)4 or [Cr(CPhCMe2)4] respectively. The mode of formation and chemical properties are reported for the chromium species, and the structures of the new compounds, both of which have been determined by single-crystal X-ray analysis, are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of tin(II) chloride with Li(CPhCPh2) at –78 °C in diethyl ether–hexane–tetrahydrofuran affords a deep red solution whose colour fades on warming, and which we believe contains the (unstable) first dialkenyltin(II) species. The latter survives long enough at low temperatures to undergo intermolecular oxidative addition, and one such adduct leads ultimately to the formation of Sn(CPhCPh2)3Bun, which has been fully characterised including a crystal and molecular structure study. The mechanism of formation of the final product has been examined and results are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two novel, monomeric heteroleptic tin(II) derivatives, [Sn{2-[(Me3Si)2C]C5H4N}R] [R = C6H2Pri3-2,4,6 1 or CH(PPh2)2 2], have been prepared, characterised by multinuclear NMR spectroscopies and their molecular structures determined by single crystal X-ray diffraction. Both compounds were prepared from the corresponding heteroleptic tin(II) chloro-analogue, [Sn{2-[(Me3Si)2C]C5H4N}Cl], and thus demonstrate the utility of this compound as a precursor to further examples of heteroleptic tin(II) derivatives: such compounds are often unstable with respect to ligand redistribution. In each case, the central tin(II) is three-co-ordinate. Crystals of trimeric [{Sn(C6H2Pri3-2,4,6)2}3] 3 were found to undergo a solid state phase transition, which may be ascribed to ordering of the ligand isopropyl groups. At 220 K the unit cell is orthorhombic, space group Pna21, compared with monoclinic, space group P21/c, for the same crystals at 298 K, in which there is an effective tripling of the now b (originally c) axis. This result illustrates the extreme crowding generated by this bulky aryl ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions of [Fe3(CO)12] with diaryltin species SnR2(R1= 2,4,6-triisopropylphenyl, R2= 2,6-diethylphenyl, R3= pentamethylphenyl) and with Sn[CH(PPh2)2]2 have been investigated. The tin reagents SnR2(R = R1 or R2) reacted under mild conditions to give in moderate yields the trinuclear species [Fe2(CO)8(µ-SnR12)]1 or [Fe2(CO)8(µ-SnR22)]2, as orange-red crystalline solids, which decompose in air on prolonged exposure. The compound [Fe2(CO)8(µ-SnR42)]3(R4= 2,4,6-triphenylphenyl) can be similarly obtained. Prolonged treatment of the carbonyl with the novel tin reagent SnR32, by contrast, afforded the known compound spiro-[(OC)8Fe2SnFe2(CO)8]4 for which data are briefly reported. Reactions with tin or lead reagents M[CH(PPh2)2]2(M = Sn or Pb) afforded [Fe2(CO)6(µ-CO)(µ-dppm)][dppm = 1,2-bis(diphenylphosphino)methane] rapidly and almost quantitatively. Full crystal and molecular structural data are reported for [Fe2(CO)8(µ-SnR12)] and [Fe2(CO)8(µ-SnR22)]. Mössbauer data are also presented for compounds 1–3, and interpreted in terms of the structural data for these and other systems.

Relevância:

20.00% 20.00%

Publicador: