959 resultados para THIOREDOXIN-BINDING PROTEIN-2
Resumo:
The flexibility of different regions of HIV-1 protease was examined by using a database consisting of 73 X-ray structures that differ in terms of sequence, ligands or both. The root-mean-square differences of the backbone for the set of structures were shown to have the same variation with residue number as those obtained from molecular dynamics simulations, normal mode analyses and X-ray B-factors. This supports the idea that observed structural changes provide a measure of the inherent flexibility of the protein, although specific interactions between the protease and the ligand play a secondary role. The results suggest that the potential energy surface of the HIV-1 protease is characterized by many local minima with small energetic differences, some of which are sampled by the different X-ray structures of the HIV-1 protease complexes. Interdomain correlated motions were calculated from the structural fluctuations and the results were also in agreement with molecular dynamics simulations and normal mode analyses. Implications of the results for the drug-resistance engendered by mutations are discussed briefly.
Resumo:
This study was undertaken to determine how dopamine influences cortical development. It focused on morphogenesis of GABAergic neurons that contained the calcium-binding protein parvalbumin (PV). Organotypic slices of frontoparietal cortex were taken from neonatal rats, cultured with or without dopamine, harvested daily (4-30 d), and immunostained for parvalbumin. Expression of parvalbumin occurred in the same regional and laminar sequence as in vivo. Expression in cingulate and entorhinal preceded that in lateral frontoparietal cortices. Laminar expression progressed from layer V to VI and finally II-IV. Somal labeling preceded fiber labeling by 2 d. Dopamine accelerated PV expression. In treated slices, a dense band of PV-immunoreactive neurons appeared in layer V at 7 d in vitro (DIV), and in all layers of frontoparietal cortex at 14 DIV, whereas in control slices such labeling did not appear until 14 and 21 DIV, respectively. The laminar distribution and dendritic branching of PV-immunoreactive neurons were quantified. More labeled neurons were in the superficial layers, and their dendritic arborizations were significantly increased by dopamine. Treatment with a D1 receptor agonist had little effect, whereas a D2 agonist mimicked dopamine's effects. Likewise, the D2 but not the D1 antagonist blocked dopamine-induced changes, indicating that they were mediated primarily by D2 receptors. Parvalbumin expression was accelerated by dopaminergic reinnervation of cortical slices that were cocultured with mesencephalic slices. Coapplication of the glutamate NMDA receptor antagonist MK801 or AP5 blocked dopamine-induced increases in dendritic branching, suggesting that changes were mediated partly by interaction with glutamate to alter cortical excitability.
Resumo:
Background: Alterations in lipid metabolism occur when animals are exposed to different feeding systems. In the last few decades, the characterisation of genes involved in fat metabolism and technological advances have enabled the study of the effect of diet on the milk fatty acid (FA) profile in the mammary gland and aided in the elucidation of the mechanisms of the response to diet. The aim of this study was to evaluate the effect of different forage diets (grazing vs. hay) near the time of ewe parturition on the relationship between the fatty acid profile and gene expression in the mammary gland of the Churra Tensina sheep breed. Results: In this study, the forage type affected the C18:2 cis-9 trans-11 (CLA) and long-chain saturated fatty acid (LCFA) content, with higher percentages during grazing than during hay feeding. This may suggest that these FAs act as regulatory factors for the transcriptional control of the carnitine palmitoyltransferase 1B (CPT1B) gene, which was more highly expressed in the grazing group (GRE). The most highly expressed gene in the mammary gland at the fifth week of lactation is CAAT/ enhancer- binding protein beta (CEBPB), possibly due to its role in milk fat synthesis in the mammary gland. More stable housekeeping genes in the ovine mammary gland that would be appropriate for use in gene expression studies were ribosomal protein L19 (RPL19) and glyceraldehyde- 3- phosphate dehydrogenase (GAPDH). Conclusions: Small changes in diet, such as the forage preservation (grazing vs. hay), can affect the milk fatty acid profile and the expression of the CPT1B gene, which is associated with the oxidation of fatty acids. When compared to hay fed indoors, grazing fresh low mountain pastures stimulates the milk content of CLA and LCFA via mammary uptake. In this sense, LCFA in milk may be acting as a regulatory factor for transcriptional control of the CPT1B gene, which was more highly expressed in the grazing group.
Resumo:
OBJECTIVE: Blood-borne biomarkers reflecting atherosclerotic plaque burden have great potential to improve clinical management of atherosclerotic coronary artery disease and acute coronary syndrome (ACS). APPROACH AND RESULTS: Using data integration from gene expression profiling of coronary thrombi versus peripheral blood mononuclear cells and proteomic analysis of atherosclerotic plaque-derived secretomes versus healthy tissue secretomes, we identified fatty acid-binding protein 4 (FABP4) as a biomarker candidate for coronary artery disease. Its diagnostic and prognostic performance was validated in 3 different clinical settings: (1) in a cross-sectional cohort of patients with stable coronary artery disease, ACS, and healthy individuals (n=820), (2) in a nested case-control cohort of patients with ACS with 30-day follow-up (n=200), and (3) in a population-based nested case-control cohort of asymptomatic individuals with 5-year follow-up (n=414). Circulating FABP4 was marginally higher in patients with ST-segment-elevation myocardial infarction (24.9 ng/mL) compared with controls (23.4 ng/mL; P=0.01). However, elevated FABP4 was associated with adverse secondary cerebrovascular or cardiovascular events during 30-day follow-up after index ACS, independent of age, sex, renal function, and body mass index (odds ratio, 1.7; 95% confidence interval, 1.1-2.5; P=0.02). Circulating FABP4 predicted adverse events with similar prognostic performance as the GRACE in-hospital risk score or N-terminal pro-brain natriuretic peptide. Finally, no significant difference between baseline FABP4 was found in asymptomatic individuals with or without coronary events during 5-year follow-up. CONCLUSIONS: Circulating FABP4 may prove useful as a prognostic biomarker in risk stratification of patients with ACS.
Resumo:
BACKGROUND: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS. METHODS: IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively. RESULTS: In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis. CONCLUSIONS: We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.
Resumo:
Understanding molecular recognition is one major requirement for drug discovery and design. Physicochemical and shape complementarity between two binding partners is the driving force during complex formation. In this study, the impact of shape within this process is analyzed. Protein binding pockets and co-crystallized ligands are represented by normalized principal moments of inertia ratios (NPRs). The corresponding descriptor space is triangular, with its corners occupied by spherical, discoid, and elongated shapes. An analysis of a selected set of sc-PDB complexes suggests that pockets and bound ligands avoid spherical shapes, which are, however, prevalent in small unoccupied pockets. Furthermore, a direct shape comparison confirms previous studies that on average only one third of a pocket is filled by its bound ligand, supplemented by a 50 % subpocket coverage. In this study, we found that shape complementary is expressed by low pairwise shape distances in NPR space, short distances between the centers-of-mass, and small deviations in the angle between the first principal ellipsoid axes. Furthermore, it is assessed how different binding pocket parameters are related to bioactivity and binding efficiency of the co-crystallized ligand. In addition, the performance of different shape and size parameters of pockets and ligands is evaluated in a virtual screening scenario performed on four representative targets.
Resumo:
The urgent need of effective therapies for methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) is a cause of concern. We aimed to ascertain the in vitro and in vivo activity of the older antibiotic fosfomycin combined with different beta-lactams against MRSA and glycopeptide-intermediate-resistant S. aureus (GISA) strains. Time-kill tests with 10 isolates showed that fosfomycin plus imipenem (FOF+IPM) was the most active evaluated combination. In an aortic valve IE model with two strains (MRSA-277H and GISA-ATCC 700788), the following intravenous regimens were compared: fosfomycin (2 g every 8 h [q8h]) plus imipenem (1 g q6h) or ceftriaxone (2 g q12h) (FOF+CRO) and vancomycin at a standard dose (VAN-SD) (1 g q12h) and a high dose (VAN-HD) (1 g q6h). Whereas a significant reduction of MRSA-227H load in the vegetations (veg) was observed with FOF+IPM compared with VAN-SD (0 [interquartile range [IQR], 0 to 1] versus 2 [IQR, 0 to 5.1] log CFU/g veg; P = 0.01), no statistical differences were found with VAN-HD. In addition, FOF+IPM sterilized more vegetations than VAN-SD (11/15 [73%] versus 5/16 [31%]; P = 0.02). The GISA-ATCC 700788 load in the vegetations was significantly lower after FOF+IPM or FOF+CRO treatment than with VAN-SD (2 [IQR, 0 to 2] and 0 [IQR, 0 to 2] versus 6.5 [IQR, 2 to 6.9] log CFU/g veg; P < 0.01). The number of sterilized vegetations after treatment with FOF+CRO was higher than after treatment with VAN-SD or VAN-HD (8/15 [53%] versus 4/20 [20%] or 4/20 [20%]; P = 0.03). To assess the effect of FOF+IPM on penicillin binding protein (PBP) synthesis, molecular studies were performed, with results showing that FOF+IPM treatment significantly decreased PBP1, PBP2 (but not PBP2a), and PBP3 synthesis. These results allow clinicians to consider the use of FOF+IPM or FOF+CRO to treat MRSA or GISA IE.
Resumo:
Osteoclasts are cells responsible for bone resorption. These cells undergo extensive membrane re-organization during their polarization for bone resorption and form four distinct membrane domains, namely the ruffled border, the basolateral membrane, the sealing zone and the functional secretory domain. The endocytic/biosynthetic pathway and transcytotic route(s) are important for the resorption process, since the endocytic/biosynthetic pathway brings the specific vesicles to the ruffled border whereas the transcytotic flow is believed to transport the degraded bone matrix away from the resorption lacuna to the functional secretory domain. In the present study, we found a new transcytotic route from the functional secretory domain to the ruffled border, which may compensate membrane loss from the ruffled border during the resorption process. We also found that lipid rafts are essential for the ruffled border-targeted late endosomal pathways. A small GTP-binding protein, Rab7, has earlier been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts it is involved in the formation of the ruffled border, which displays several features of late endosomal membranes. Here we discovered a new Rab7-interacting protein, Rac1, which is another small GTP-binding protein and binds to the GTP-form of Rab7 in vitro. We demonstrated further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, this colocalization is mainly perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, we suggest that the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments, thus enabling endosomal vesicles to switch tracks from microtubules to microfilaments before their fusion to the ruffled border. We then studied the role of Rab-Rac1 interaction in the slow recycling pathway. We revealed that Rac1 also binds directly to Rab11 and to some other but not all Rab-proteins, suggesting that Rab-Rac1 interaction could be a general regulatory mechanism to direct the intracellular vesicles from microtubule mediated transport to actin filament mediated transport and vice versa. On the basis of our results we thus propose a new hypothesis for these GTPases in the regulation of intracellular membrane flow.
Resumo:
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.
Resumo:
Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.
Resumo:
Patients with sickle cell anemia (Hb SS) or sickle cell trait (Hb AS) may present several types of renal dysfunction; however, comparison of the prevalence of these abnormalities between these two groups and correlation with the duration of disease in a large number of patients have not been thoroughly investigated. In a cross-sectional study using immunoenzymometric assays to measure tubular proteinuria, microalbuminuria, measurement of creatinine clearance, urinary osmolality and analysis of urine sediment, we evaluated glomerular and tubular renal function in 106 adults and children with Hb SS (N = 66) or Hb AS (N = 40) with no renal failure (glomerular filtration rate (GFR) >85 ml/min). The percentage of individuals with microalbuminuria was higher among Hb SS than among Hb AS patients (30 vs 8%, P<0.0001). The prevalence of microhematuria was similar in both groups (26 vs 30%, respectively). Increased urinary levels of retinol-binding protein or ß2-microglobulin were detected in only 3 Hb SS and 2 Hb AS patients. Urinary osmolality was reduced in patients with Hb SS or with Hb AS; however, it was particularly evident in Hb SS patients older than 15 years (median = 393 mOsm/kg, range = 366-469) compared with Hb AS patients (median = 541 mOsm/kg, range = 406-722). Thus, in addition to the frequently reported early reduction of urinary osmolality and increased GFR, nondysmorphic hematuria was found in 26 and 30% of patients with Hb SS or Hb AS, respectively. Microalbuminuria is an important marker of glomerular injury in patients with Hb SS and may also be demonstrated in some Hb AS individuals. Significant proximal tubular dysfunction is not a common feature in Hb SS and Hb AS population at this stage of the disease (i.e., GFR >85 ml/min).
Resumo:
Mutant cell lines B3 and B10, which are unresponsive to both interferon (IFN)-alpha and IFN-gamma, and line B9, which does not respond to IFN-gamma stimulation, are described. The mutants were submitted to fluorescence-activated cell sorting (FACS) from a cellular pool, which was obtained from the parental cell line 2C4 after several rounds of mutagenesis. The unresponsiveness to IFN stimulation was observed both in terms of expression of cell surface markers (CD2, class I and II HLAs) and mRNA expression of IFN-stimulated genes (2'-5' oligoadenylate synthetase (OAS), 9-27, and guanylate binding protein (GBP)). Genetic crossing of B3, B9 and B10 with U3 (STAT1-), gamma2a (JAK2-) and U4 (JAK1-) mutants, respectively, did not restore IFN responsiveness to the hybrid cell lines. However, when these cell lines were crossed with the same mutants, but using the pairwise crosses B3 x U4, B9 x U3 and B10 x U3, the cell hybrids recovered full IFN responsiveness. The present genetic experiments permitted us to assign the mutant cell lines B3, B9 and B10 to the U3, gamma2 and U4 complementation groups, respectively. These conclusions were supported by the analysis of IFN-stimulated genes in the mutants.
Resumo:
Prions are an unconventional form of infectious agents composed only of protein and involved in transmissible spongiform encephalopathies in humans and animals. The infectious particle is composed by PrPsc which is an isoform of a normal cellular glycosyl-phosphatidylinositol (GPI) anchored protein, PrPc, of unknown function. The two proteins differ only in conformation, PrPc is composed of 40% a helix while PrPsc has 60% ß-sheet and 20% a helix structure. The infection mechanism is trigged by interaction of PrPsc with cellular prion protein causing conversion of the latter's conformation. Therefore, the infection spreads because new PrPsc molecules are generated exponentially from the normal PrPc. The accumulation of insoluble PrPsc is probably one of the events that lead to neuronal death. Conflicting data in the literature showed that PrPc internalization is mediated either by clathrin-coated pits or by caveolae-like membranous domains. However, both pathways seem to require a third protein (a receptor or a prion-binding protein) either to make the connection between the GPI-anchored molecule to clathrin or to convert PrPc into PrPsc. We have recently characterized a 66-kDa membrane receptor which binds PrPc in vitro and in vivo and mediates the neurotoxicity of a human prion peptide. Therefore, the receptor should have a role in the pathogenesis of prion-related diseases and in the normal cellular process. Further work is necessary to clarify the events triggered by the association of PrPc/PrPsc with the receptor.
Resumo:
The interaction of plasminogen, tissue plasminogen activator (t-PA) and urokinase with a clinical strain of Helicobacter pylori was studied. Plasminogen bound to the surface of H. pylori cells in a concentration-dependent manner and could be activated to the enzymatic form, plasmin, by t-PA. Affinity chromatography assays revealed a plasminogen-binding protein of 58.9 kDa in water extracts of surface proteins. Surface-associated plasmin activity, detected with the chromogenic substrate CBS 00.65, was observed only when plasminogen and an exogenous activator were added to the cell suspension. The two physiologic plasminogen activators, t-PA and urokinase, were also shown to bind to and remain active on the surface of bacterial cells. epsilon-Aminocaproic acid caused partial inhibition of t-PA binding, suggesting that the kringle 2 structure of this activator is involved in the interaction with surface receptors. The activation of plasminogen by t-PA, but not urokinase, strongly depended on the presence of cells and a 25-fold enhancer effect on the initial velocity of activation by t-PA compared to urokinase was established. Furthermore, a relationship between cell concentration and the initial velocity of activation was demonstrated. These findings support the concept that plasminogen activation by t-PA on the bacterial surface is a surface-dependent reaction which offers catalytic advantages.
Resumo:
Sm14 is a 14-kDa vaccine candidate antigen from Schistosoma mansoni that seems to be involved in cytoplasmic trafficking of fatty acids. Although schistosomes have a high requirement for lipids, they are not able to synthesize fatty acids and sterols de novo. Thus, they must acquire host lipids. In order to determine whether Sm14 is present in different stages of the life cycle of the parasite, we performed RT-PCR. Sm14 mRNA was identified in all stages of the life cycle studied, mainly schistosomulum, adult worm and egg. Additionally, we used a rabbit anti-Sm14 polyclonal antibody in an indirect immunofluorescence assay to localize Sm14 in adult worm sections. The basal lamella of the tegument and the gut epithelium were strongly labeled. These tissues have a high flow of and demand for lipids, a finding that supports the putative role of Sm14 as an intracellular transporter of fatty acids from host cells.