988 resultados para TH
Resumo:
The beta-delayed neutron and gamma spectra of neutron-rich nucleus N-21 using beta-gamma and beta-n coincidence measurements were presented in this paper. Thirteen new neutron groups ranging from 0.28 MeV to 4.98 MeV and with a total branching ratio 88.7 +/- 4.2% were observed. One gamma transition among the excited states of O-21 and foury transitions among the excited states of O-20 were identified in the beta decay chain of N-21. The ungated half-life of 83.8 +/- 2.1 ms was also determined for N-21.
Resumo:
The research of the in-beam efficiency calibration of Neutron Detector Array of Peking University using N-17 and C-16 beams was introduced in this paper. The efficiency of neutron wall and ball are comparable to the foreign similar devices and neutrons can be detected from low to high energies in high efficiency.
Resumo:
Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed through a 15 mu g/cm(2) carbon foil. The equilibrated average charge state is 33.72 and the charge equilibration time of uranium ions in carbon foil is less than 5.4fs.
Resumo:
Deconfinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. We include a perturbative QCD correction parameter alpha(s) in the CFL quark matter equation of states. It is shown that the CFL quark core with K-0 condensation forms in neutron star matter with the large value of alpha(s). If the small value of alpha(s) is taken, hyperons suppress the CFL quark phase and the HP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter alpha(s) or decreasing the bag constant B and the strange quark mass m(s) can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter alpha(s).
Resumo:
Large-sized CsI (Tl) single crystals, similar to phi 100 mm x 350 mm, have been grown successfully, and this CsI(Tl) coupled with PD has been successfully utilized at RIBLL (the Radioactive Ion Beam Line in Lanzhou) to measure the energy of heavy ions as a stopping detector. The performances of CsI(Tl) detector coupled with PD and APD have been tested and compared, including the temperature dependence of scintillating light yield
Resumo:
An internal target experiment at HIRFL-CSRm is planned for hadron physics, which focuses on hadron spectroscopy, polarized strangeness production and medium effect. A conceptual design of Hadron Physics Lanzhou Spectrometer (HPLUS) is discussed. Related computing framework involves event generation, simulation, reconstruction and final analysis. The R&D works on internal target facilities and sub-detectors are presented briefly.
Resumo:
The excitation functions of two very similar reaction channels, Fe-58+Pb-208 ->(265)Hs+1n and Fe-58+Bi-209 ->(266)Mt+1n are studied in the framework of the dinuclear system conception. The fusion probabilities are found to be strongly subject to the structure of the driving potential. Usually the fusion probability is hindered by a barrier from the injection channel towards the compound nuclear configuration. The barrier towards the mass symmetrical direction, however, also plays an important role for the fusion probability, because the barrier hinders the quasi-fission, and therefore helps fusion.
Resumo:
The temperature dependences of the light output of CsI(Tl) crystal grown at IMP and of the gain of the Hamamatsu S8664-1010 avalanche photodiode (APD) have been investigated systematically. The light output of the CsI(Tl) crystal increases with temperature by 0.67%/degrees C in the region from -2 degrees C to 8 degrees C, and by 0.33%/degrees C in the region from 8 degrees C to 25 degrees C, while the gain of the tested APD decreases by -3.68%/degrees C (working voltage 400V) on average in the room temperature range. The best energy resolution 5.1% of the CsI(Tl) with APD was obtained for the 662keV gamma ray from Cs-137 radiation source.
Resumo:
A recoil separator Wien-filter which was developed for the Radioactive Ion Beam Line in Lanzhou (RIBLL) as an extension is described. It consists of 2 quadruple triplets and a standard Wien-filter. It was designed for study of the fusion-evaporation reactions. The overall design, background suppression, the transmission efficiency, the angular acceptance and the momentum acceptance have been described. All the performances fulfil the designed requirements. Based on the test results, with some modifications the investigations of the nuclei with Z <= 110 and the drip-line nuclei in the medium-heavy mass region can be carried out with this facility.
Resumo:
A transverse field gas ionization chamber as Delta E detector at the Radioactive Ion Beam Line in Lanzhou (RIBLL) is described. A high detection efficiency and long plateau are achieved with the mixed gas Ar(80%)+CO2(20%). The energy resolution is 3.25% for 4.94MeV alpha particle. This ionization chamber has been tested in the experiment with 50MeV/u Ni-58 bombarding Ta at RIBLL. All the fragments can be identified clearly by the ionization chamber.
Resumo:
In the concept of dinuclear system, the quasifission rate from Kramers formula has been incorporated in the master equation in order to study the competition between fusion and qusifission. Mass yields of quasifission products of the three reactions Ca-48 + Pu-244, Ca-48 + U-238 and Fe-58 + Th-232 have been calculated, and the experimental data are reproduced very well, which is a critical test for the existing fusion model. Also we have shown the time evolution of the mass distributions of quasifission products, which provides valuable information of the process of competition between fusion and quasifission.
Resumo:
With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL II) which connects the CSRm and the CSRe, an experimental setup for physics research is highly required. A large area neutron detection wall is the main part of the setup. This paper introduced the detection principle of the neutron detection wall and the Monte-Carlo simulation of its design under the environment of the Geant4 toolkit. We presented the final design with the optimized parameters and the performance of the wall.
Resumo:
To gain a better insight into alpha-decay fine structure, we calculate the relative intensities of alpha decay to 2(+) and 4(+) rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula. The calculated relative intensities of a decay to 2(+) states are in good agreement with the experimental data. For the relative intensities of alpha decay to 4(+) states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of alpha-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.
Resumo:
New parameters of nearest-neighbor EAM (1N-EAM), n-th neighbor EAM (NN-EAM), and the second-moment approximation to the tight-binding (TB-SMA) potentials are obtained by fitting experimental data at different temperatures. In comparison with the available many-body potentials, our results suggest that the 1N-EAM potential with the new parameters is the best description of atomic interactions in studying the thermal expansion of noble metals. For mechanical properties, it is suggested that the elastic constants should be calculated in the experimental zero-stress states for all three potentials. Furthermore, for NNEAM and TB-SMA potentials, the calculated results approach the experimental data as the range of the atomic interaction increases from the first-neighbor to the sixth-neighbor distance.
Resumo:
新核素的合成及衰变性质的研究一直是核物理科学的前沿领域,它对于人类拓广对原子核运动规律的认识有着十分重要的意义。本文首先概述了新核素合成的意义、方法,并简要阐述了一种奇异的衰变方式—β~-延发裂变,为实验部分的论述提供理论基础。在实验部分,本文阐述了用放射化学方法研究了钍、钡、镭等复杂反应产物的化学分离。通过在Th的分离中引用PMBP萃取和反萃体系,并采用氧化还原体系有效地去除了绝大多数杂质元素,特别是非常好的去除了碘和溴离子的沾污,较好地完成了Th与其它反应产物的分离。对Ba、Ra的分离主要采用快速的阳离子交换流程,达到了满意的分离效果。对用中能~(18)O离子束照射铀、钍的反应产物进行分离,对分离出的钍、钡、镭样品进行了γ(X)单谱和时间序列谱测量。并对记录下来的样品的谱图进行了分析。使用上述方法,我们在兰州重离子加速器(HIRFL)上用~(18)O离子照射重铀酸铵靶,通过多核子转移反应,首次合成并鉴别了新核素不相识~(238)Th。 同时通过不同的反应道产生~(237)Th,并对~(237)Th的半衰期进行了测定;在HIRFL上用~(18)O离子照射氧化钍靶对~(230)Ra的子体~(230)Ac的β~-延发裂变现象进行了观测,在被Ra样品爆光的云母径迹探测器上观察到了两个裂变径迹,从ThO_2靶中用三次BaCl_2沉淀法分离出钡、使用γ谱学这技术测定了十多个Ba的放射性同位素的截面。