935 resultados para Synchronous generators
Resumo:
Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.
Resumo:
Kamchatka is one of the world’s most active volcanic regions and has hosted many explosive eruptions during the Holocene. These eruptions had the potential to disperse tephra over wide areas, forming time-synchronous markers wherever those tephras are found. Recent research in Kamchatka has begun to focus on the geochemical analysis of individual glass shards in order to characterise tephra layers. We have applied this approach to the study of visible tephras from three lakes – one in central and two in northern Kamchatka – with the aim of identifying key tephras and potential issues in the application of distal (>100 km from an active volcano) tephra in volcanically complex regions. In total, 23 tephras from 22 tephra beds have been geochemically analysed, representing products from at least four volcanic systems in Kamchatka. We demonstrate that distal lake sediments in the region can yield reliable tephrostratigraphies, capturing tephra from eruptions that have the greatest potential to disperse volcanic ash beyond the region. We draw attention to issues relating to correlating and distinguishing key marker horizons from the highly active Shiveluch Volcano, namely the need to ensure inter-lab comparability of geochemical data and good chronological control of the proximal and distal tephras. Importantly, we have also extended the known distribution of two key tephra isochrons from the Ksudach volcano. Our work contributes valuable glass geochemical on data several key marker beds that will facilitate future tephra and palaeoenvironmental research within and beyond Kamchatka.
Resumo:
Smart Grids are characterized by the application of information communication technology (ICT) to solve electrical energy challenges. Electric power networks span large geographical areas, thus a necessary component of many Smart Grid applications is a wide area network (WAN). For the Smart Grid to be successful, utilities must be confident that the communications infrastructure is secure. This paper describes how a WAN can be deployed using WiMAX radio technology to provide high bandwidth communications to areas not commonly served by utility communications, such as generators embedded in the distribution network. A planning exercise is described, using Northern Ireland as a case study. The suitability of the technology for real-time applications is assessed using experimentally obtained latency data.
Resumo:
It is an exciting era for molecular computation because molecular logic gates are being pushed in new directions. The use of sulfur rather than the commonplace nitrogen as the key receptor atom in metal ion sensors is one of these directions; plant cells coming within the jurisdiction of fluorescent molecular thermometers is another, combining photochromism with voltammetry for molecular electronics is yet another. Two-input logic gates benefit from old ideas such as rectifying bilayer electrodes, cyclodextrin-enhanced room-temperature phosphorescence, steric hindrance, the polymerase chain reaction, charge transfer absorption of donor–acceptor complexes and lectin–glycocluster interactions. Furthermore, the concept of photo-uncaging enables rational ways of concatenating logic gates. Computational concepts are also applied to potential cancer theranostics and to the selective monitoring of neurotransmitters in situ. Higher numbers of inputs are also accommodated with the concept of functional integration of gates, where complex input–output patterns are sought out and analysed. Molecular emulation of computational components such as demultiplexers and parity generators/checkers are achieved in related ways. Complexity of another order is tackled with molecular edge detection routines.
Resumo:
The creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density MS in a solenoid. In addition to large MS, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard disk drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on MS for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large MS, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.
Resumo:
The North Atlantic has played a key role in abrupt climate changes due to the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to the location and strength of deep water formation. It is crucial for modelling future climate change to understand the role of the AMOC in the rapid warming and gradual cooling cycles known as Dansgaard-Oescher (DO) events which are recorded in the Greenland ice cores. However, palaeoceanographic research into DO events has been hampered by the uncertainty in timing due largely to the lack of a precise chronological time frame for marine records. While tephrochronology provides links to the Greenland ice core records at a few points, radiocarbon remains the primary dating method for most marine cores. Due to variations in the atmospheric and oceanic 14C concentration, radiocarbon ages must be calibrated to provide calendric ages. The IntCal Working Group provides a global estimate of ocean 14C ages for calibration of marine radiocarbon dates, but the variability of the surface marine reservoir age in the North Atlantic particularly during Heinrich or DO events, makes calibration uncertain. In addition, the current Marine09 radiocarbon calibration beyond around 15 ka BP is largely based on 'tuning' to the Hulu Cave isotope record, so that the timing of events may not be entirely synchronous with the Greenland ice cores. The use of event-stratigraphy and independent chronological markers such as tephra provide the scope to improve marine radiocarbon reservoir age estimates particularly in the North Atlantic where a number of tephra horizons have been identified in both marine sediments and the Greenland ice cores. Quantification of timescale uncertainties is critical but statistical techniques which can take into account the differential dating between events can improve the precision. Such techniques should make it possible to develop specific marine calibration curves for selected regions.
Resumo:
Throughout the European Union there is an increasing amount of wind generation being dispatched-down due to the binding of power system operating constraints from high levels of wind generation. This paper examines the impact a system non-synchronous penetration limit has on the dispatch-down of wind and quantifies the significance of interconnector counter-trading to the priority dispatching of wind power. A fully coupled economic dispatch and security constrained unit commitment model of the Single Electricity Market of the Republic of Ireland and Northern Ireland and the British Electricity Trading and Transmission Arrangement was used in this study. The key finding was interconnector counter-trading reduces the impact the system non-synchronous penetration limit has on the dispatch-down of wind. The capability to counter-trade on the interconnectors and an increase in system non-synchronous penetration limit from 50% to 55% reduces the dispatch-down of wind by 311 GW h and decreases total electricity payments to the consumer by €1.72/MW h. In terms of the European Union electricity market integration, the results show the importance of developing individual electricity markets that allow system operators to counter-trade on interconnectors to ensure the priority dispatch of the increasing levels of wind generation.
Resumo:
Cyber-attacks against Smart Grids have been found in the real world. Malware such as Havex and BlackEnergy have been found targeting industrial control systems (ICS) and researchers have shown that cyber-attacks can exploit vulnerabilities in widely used Smart Grid communication standards. This paper addresses a deep investigation of attacks against the manufacturing message specification of IEC 61850, which is expected to become one of the most widely used communication services in Smart Grids. We investigate how an attacker can build a custom tool to execute man-in-the-middle attacks, manipulate data, and affect the physical system. Attack capabilities are demonstrated based on NESCOR scenarios to make it possible to thoroughly test these scenarios in a real system. The goal is to help understand the potential for such attacks, and to aid the development and testing of cyber security solutions. An attack use-case is presented that focuses on the standard for power utility automation, IEC 61850 in the context of inverter-based distributed energy resource devices; especially photovoltaic (PV) generators.
Resumo:
Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.
Resumo:
Static timing analysis provides the basis for setting the clock period of a microprocessor core, based on its worst-case critical path. However, depending on the design, this critical path is not always excited and therefore dynamic timing margins exist that can theoretically be exploited for the benefit of better speed or lower power consumption (through voltage scaling). This paper introduces predictive instruction-based dynamic clock adjustment as a technique to trim dynamic timing margins in pipelined microprocessors. To this end, we exploit the different timing requirements for individual instructions during the dynamically varying program execution flow without the need for complex circuit-level measures to detect and correct timing violations. We provide a design flow to extract the dynamic timing information for the design using post-layout dynamic timing analysis and we integrate the results into a custom cycle-accurate simulator. This simulator allows annotation of individual instructions with their impact on timing (in each pipeline stage) and rapidly derives the overall code execution time for complex benchmarks. The design methodology is illustrated at the microarchitecture level, demonstrating the performance and power gains possible on a 6-stage OpenRISC in-order general purpose processor core in a 28nm CMOS technology. We show that employing instruction-dependent dynamic clock adjustment leads on average to an increase in operating speed by 38% or to a reduction in power consumption by 24%, compared to traditional synchronous clocking, which at all times has to respect the worst-case timing identified through static timing analysis.
Resumo:
The integration of an ever growing proportion of large scale distributed renewable generation has increased the probability of maloperation of the traditional RoCoF and vector shift relays. With reduced inertia due to non-synchronous penetration in a power grid, system wide disturbances have forced the utility industry to design advanced protection schemes to prevent system degradation and avoid cascading outages leading to widespread blackouts. This paper explores a novel adaptive nonlinear approach applied to islanding detection, based on wide area phase angle measurements. This is challenging, since the voltage phase angles from different locations exhibit not only strong nonlinear but also time-varying characteristics. The adaptive nonlinear technique, called moving window kernel principal component analysis is proposed to model the time-varying and nonlinear trends in the voltage phase angle data. The effectiveness of the technique is exemplified using both DigSilent simulated cases and real test cases recorded from the Great Britain and Ireland power systems by the OpenPMU project.
Resumo:
This paper describes a smart grid test bed comprising embedded generation, phasor measurement units (PMUs), and supporting ICT components and infrastructure. The test bed enables the development of a use case focused on a synchronous islanding scenario, where the embedded generation becomes islanded from the mains supply. Due to the provisioned control components, control strategy, and best-practice ICT support infrastructure, the islanded portion of the grid is able to continue to operate in a secure and dependable manner.
Resumo:
Os Sinais de Espalhamento de Espectro de Sequência Directa exibem propriedades cicloestacionárias que implicam redundância entre componentes de frequência espaçadas por múltiplos da taxa de símbolo. Nesta tese, é apresentado um cancelador de interferência multiutilizador (Cancelador por translação na frequência - FSC) que tira partido desta propriedade. Este cancelador linear opera no domínio da frequência no sinal espalhado de tal forma que minimiza a interferência e ruído na saída (Critério do Mínimo Erro Quadrado Médio). Além de testado para o caso de antena única, são avaliadas as performances das configurações de antenas múltiplas para o caso de beamforming e canais espacialmente descorrelacionados considerando sistemas síncronos e sistemas com desalinhamento no tempo dos perfis de canais (ambos UMTS-TDD). Essas configurações divergiam na ordem da combinação temporal, combinação espacial e detecção multiutilizador. As configurações FSC foram avaliadas quando concatenadas com o PIC-2D. Os resultados das simulações mostram consideráveis melhorias nos resultados relativamente ao RAKE-2D convencional e PIC-2D. Foi atingida performance próximo ao RAKE de utilizador único quando o FSC foi avaliado concatenado com PIC-2D em quase todas as configurações. Todas as configurações foram avaliadas com modulação QPSK, 8-PSK e 16-QAM. Foi introduzida codificação Turbo e identificou-se as situações da vantagem de utilização do FSC antes do PIC-2D. As modulações 8-PSK e 16-QAM foram igualmente testadas com codificação.
Resumo:
Esta tese dedica-se ao estudo de hipermapas regulares bicontactuais, hipermapas com a propriedade que cada hiperface contacta só com outras duas hiperfaces. Nos anos 70, S. Wilson classificou os mapas bicontactuais e, em 2003, Wilson e Breda d’Azevedo classificaram os hipermapas bicontactuais no caso não-orientável. Quando esta propriedade é transferida para hipermapas origina três tipos de bicontactualidade, atendendo ao modo como as duas hiperfaces aparecem à volta de uma hiperface fixa: edge-twin, vertextwin and alternate (dois deles são o dual um do outro). Um hipermapa topológico é um mergulho celular de um grafo conexo trivalente numa superfície compacta e conexa tal que as células são 3-coloridas. Ou de maneira mais simples, um hipermapa pode ser visto como um mapa bipartido. Um hipermapa orientado regular é um triplo ordenado consistindo num conjunto finito e dois geradores, que são permutações (involuções) do conjunto tal que o grupo gerado por eles, chamado o grupo de monodromia, actua regularmente no conjunto. Nesta tese, damos uma classificação de todos os hipermapas orientados regulares bicontactuais e, para completar, reclassificamos, usando o nosso método algébrico, os hipermapas não-orientáveis bicontactuais.
Resumo:
A presente dissertação contempla estudos de funcionalização de 5,10,15,20- tetrafenilporfirina via grupos nitro e amino e a preparação de sistemas porfirina-ftalocianina. Este trabalho encontra-se dividido em quatro partes. Na primeira parte descrevem-se as características gerais de porfirinas e ftalocianinas bem como algumas metodologias de síntese utilizadas na sua preparação e suas potenciais aplicações. Na segunda parte desta dissertação descreve-se a funcionalização de 5,10,15,20-tetrafenilporfirina com arilaminas recorrendo a duas rotas sintéticas diferentes. A reacção de 2-nitro-5,10,15,20-tetrafenilporfirina com anilina ou aminas aromáticas substituídas com grupos dadores de electrões permitiu, através do ataque do nucleófilo ao carbono beta-pirrólico onde está ligado o grupo nitro, ataque ipso, a obtenção de derivados do tipo 2-arilaminoporfirinas e derivados porfirínicos de anéis fundidos, sendo estes últimos resultantes da ciclização oxidativa de 2-arilaminoporfirinas. A reacção entre (2-amino- 5,10,15,20-tetrafenilporfirinato)níquel(II) e brometos de arilo na presença de paládio, reacção de aminação de Buchwald-Hartwig, permitiu, após descomplexação, a preparação de novos derivados do tipo 2- arilaminoporfirinas com grupos substituintes dadores e aceitadores de electrões. Um dos derivados porfirínicos de anéis fundidos foi submetido a reacção de complexação com diferentes iões metálicos e foram estudadas as respectivas propriedades fotoquímicas e electroquímicas. Esses estudos revelaram que estes compostos são bons geradores de oxigénio singuleto e que sofrem processos de oxidação-redução electroquimicamente reversíveis. Esta metodologia foi estendida ainda a brometos de hetarilo (derivados de piridina e tiofeno). Recorrendo ao acoplamento, em condições de Buchwald-Hartwig, de complexos metálicos da 5,10,15,20-tetrafenilporfirina, funcionalizados com grupos amino e bromo, preparam-se dímeros porfirina-amino-porfirina, cujos espectros electrónicos revelam a existência de uma boa “comunicação electrónica” entre as duas subunidades. A terceira parte descreve a síntese de sistemas porfirina-ftalocianina. Recorrendo à condensação estatística entre a 5,10,15,20-tetrafenilporfirina substituída com um grupo ftalonitrilo na posição beta-pirrólica com ftalonitrilo ou ftalonitrilo substituído foram obtidas díades porfirina-ftalocianina onde as duas subunidades se encontram directamente ligadas ou fundidas. Os porfirinilftalonitrilos necessários para a síntese das diferentes díades foram preparados através da reacção de adição do fumaronitrilo à 5,10,15,20- tetrafenilporfirina funcionalizada com o grupo 1,3-butadienilo ou vinilo, seguida de oxidação do aducto resultante. O acoplamento catalisado por paládio entre (2-bromo-5,10,15,20- tetrafenilporfirinato)zinco(II) e [9(10),16(17),23(24)-tri-terc-butil-2- etinilftalocianinato]zinco(II) permitiu a síntese de uma díade porfirinaftalocianina com as duas unidades ligadas por um grupo etinilo. Uma pentíade porfirina-ftalocianina foi obtida através da ciclotetramerização de um dos porfirinilftalonitrilos. A comparação dos espectros electrónicos das diferentes classes de sistemas revela que as correspondentes propriedades electrónicas são altamente afectadas pela distância entre as subunidades e também pelo número de cromóforos presentes no sistema. Os estudos fotofísicos de alguns dos novos compostos acima referidos permitiram verificar a ocorrência eficiente de transferência de energia da subunidade porfirínica para a da ftalocianina, capacidade essa que permitirá a estes sistemas serem usados para modelar o processo fotossintético. Na última parte descrevem-se, pormenorizadamente, todas as experiências efectuadas e as caracterizações espectroscópicas, nomeadamente de espectroscopia de ressonância magnética nuclear (RMN), espectrometria de massa e espectrofotometria de UV-vis, dos compostos sintetizados. Nalguns casos recorreu-se ainda a técnicas de RMN bidimensionais como COSY, HSQC, HMBC, NOESY e ROESY.