937 resultados para Super-Reflexive
Resumo:
The cathodic and anodic characteristics of freshly polished and pre-reduced UNS S32550 (ASTM A479) super duplex stainless steel in a filtered and conductivity-adjusted seawater have been investigated under controlled flow conditions. A rotating cylinder electrode was used together with both steady and non-steady-state voltammetry and a potential step current transient technique to investigate the electrode reactions in the fully characterized electrolyte. Both oxygen reduction and hydrogen evolution were highly irreversible and the material exhibited excellent passivation and repassivation kinetics. Relative corrosion rates were derived and the corrosion mechanism of the alloy was found to be completely independent of the mass-transfer effects, which can contribute to flow-induced corrosion.
Resumo:
The authors present a super-fast scanning (SFS) technique for phased array weather radar applications. The fast scanning feature of the SFS technique is described and its drawbacks identified. Techniques which combat these drawbacks are also presented. A concept design phased array radar system (CDPAR) is used as a benchmark to compare the performance of a conventional scanning phased array radar system with the SFS technique. It is shown that the SFS technique, in association with suitable waveform processing, can realise four times the scanning speed and achieve similar accuracy compared to the conventional phased array benchmark.
Resumo:
The aim of this study was to quantify movements of Super 12 rugby players in competition because information on elite rugby players' movements is unavailable. Players were categorized into forwards [front (n = 16) and back row (n = 15)] and backs [inside (n = 9) and outside backs (n = 7)] and their movements analysed by video-based time motion analysis. Movements were classified as rest (standing, walking and jogging) and work (striding, sprinting, static exertion, jumping, lifting or tackling). The total time, number and duration of individual activities were assessed, with differences between groups evaluated using independent sample t-tests (unequal variances), while differences between halves were assessed with paired sample t-tests. Forwards had 7:47 min:s (95% confidence limits: 6:39 to 8:55 min:s, P
Resumo:
PURPOSE. To investigate the effect of age on optokinetic nystagmus (OKN) in response to stimuli designed to preferentially stimulate the M-pathway. METHOD. OKN was recorded in 10 younger (32.3 +/- 5.98 years) and 10 older (65.6 +/- 6.53) subjects with normal vision. Vertical gratings of 0.43 or 1.08 cpd drifting at 5 degrees/s or 20 degrees/s and presented at either 8% or 80% contrast were displayed on a large screen as full-field stimulation, central stimulation within a central Gaussian-blurred window of 15 diameter, or peripheral stimulation outside this window. All conditions apart from the high-contrast condition were presented in a random order at two light levels, mesopic (1.8 cdm(-2)) and photopic (71.5 cdm(-2)). RESULTS. Partial-field data indicated that central stimulation, mesopic light levels, and lower temporal frequency each significantly increased slow-phase velocity (SPV). Although there was no overall difference between groups for partial-field stimulation, full-field stimulation, or low-contrast stimulation, a change in illumination revealed a significant interaction with age: there was a larger decrease in SPV going from photopic to mesopic conditions for the older group than the younger group, especially for higher temporal frequency stimulation. CONCLUSIONS. OKN becomes reflexive in conditions conducive to M-pathway stimulation, and this rOKN response is significantly diminished in older healthy adults than in younger healthy adults, indicative of decreased M-pathway sensitivity.
Resumo:
This paper reports a free vibration analysis of thick plates with rounded corners subject to a free, simply-supported or clamped boundary condition. The plate perimeter is defined by a super elliptic function with a power defining the shape ranging from an ellipse to a rectangle. To incorporate transverse shear deformation, the Reddy third-order plate theory is employed. The energy integrals incorporating shear deformation and rotary inertia are formulated and the p-Ritz procedures are used to derive the governing eigenvalue equation. Numerical examples for plates with different shapes and boundary conditions are solved and their frequency parameters, where possible, are compared with known results. Parametric studies are carried out to show the sensitivities of frequency parameters by varying the geometry, fibre stacking sequence, and boundary condition. (C) 1999 Academic Press.
Resumo:
We recorded reflexive OKN in ten younger (32.3±5.98 years) and older (65.6±6.53) visually normal subjects under viewing conditions designed to differentiate M-pathway functioning from other pathways. Subjects were required to gaze straight ahead while viewing vertical gratings of either 0.43 or 1.08 cpd, drifting at either 5 or 20°/sec and presented at either 8 or 80% contrast. Gratings were presented as full field stimulation, central stimulation or peripheral (>15°) stimulation. The order of presentation of conditions was pseudo-randomised at two blocked light levels: ‘mesopic’ or twilight conditions (1.8 cdm-2) and ‘photopic’ or full light conditions (71.5 cdm-2). For the partial fields, central stimulation, mesopic light level, lower temporal frequencies (i.e. number of stripes passing per second) each contributed to greater OKN strength as measured by slow-phase velocity (SPV). For full field stimulation, and especially for higher temporal frequencies and low contrast, there was a significant interaction between age group × light level (p = 0.017): SPV diminished much more among the older than the younger group for the twilight condition compared to full light. Such a clear diminution in M-pathway sensitivity revealed by OKN response has important implications for everyday situations like crash avoidance under twilight driving conditions.
Resumo:
Continuing Professional Development (CPD) is seen as a vital part of a professional engineer’s career, by professional engineering institutions as well as individual engineers. Factors such as ever-changing workforce requirements and rapid technological change have resulted in engineers no longer being able to rely just on the skills they learnt at university or can pick up on the job; they must undergo a structured professional development with clear objectives to develop further professional knowledge, values and skills. This paper presents a course developed for students undertaking a Master of Engineering or Master of Project Management at the University of Queensland. This course was specifically designed to help students plan their continuing professional development, while developing professional skills such as communication, ethical reasoning, critical judgement and the need for sustainable development. The course utilised a work integrated learning pedagogy applied within a formal learning environment, and followed the competency based chartered membership program of Engineers Australia, the peak professional body of engineers in Australia. The course was developed and analysed using an action learning approach. The main research question was “Can extra teaching and learning activities be developed that will simulate workplace learning?” The students continually assessed and reflected upon their current competencies, skills and abilities, and planed for the future attainment of specific competencies which they identified as important to their future careers. Various evaluation methods, including surveys before and after the course, were used to evaluate the action learning intervention. It was found that the assessment developed for the course was one of the most important factors, not only in driving student learning, as is widely accepted, but also in changing the students’ understandings and acceptance of the need for continuous professional development. The students also felt that the knowledge, values and skills they developed would be beneficial for their future careers, as they were developed within the context of their own professional development, rather than to just get through the course. © 2005, American Society for Engineering Education