981 resultados para Strontium carbonate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Middle Jurassic basaltic lavas obtained from Site 801 in the western Pacific Pigafetta Basin represent ocean crust from the oldest segment of the present-day Pacific Ocean. A composite 131 m section shows the basement to be composed of an upper alkalic basalt sequence (about 157 Ma) with ocean island basalt chemical features and a lower tholeiitic basalt sequence (about 167 Ma) with typical normal-type mid-ocean ridge basalt features. The basalt sequences are separated by a quartz-cemented, yellow goethite hydrothermal deposit. Most basalts are altered to some degree and exhibit variable, low-grade smectite-celadonite-pyrite-carbonate-zeolite assemblages developed under a mainly hydrated anoxic environment. Oxidation is very minor, later in development than the hydration assemblages, and largely associated with the hydrothermal deposit. The tholeiitic normal-type mid-ocean ridge basalt has characteristically depleted incompatible element patterns and all compositions are encompassed by recent mid-ocean ridge basalt from the East Pacific Rise. Chemically, the normal-type mid-ocean ridge basalt is divided into a primitive plagioclase-olivine +/- spinel phyric group (Mg* = 72-60) and an evolved (largely) aphyric group of olivine tholeiites (Mg* = 62-40). Both groups form a single comagmatic suite related via open-system fractionation of initial olivine-spinel followed by olivine-plagioclase-clinopyroxene. The alkalic ocean island basalt are largely aphyric and display enriched incompatible element abundances within both relatively primitive olivine-rich basalts and evolved olivine-poor hawaiites related via mafic fractionation. In gross terms, the basement lithostratigraphy is a typical mid-ocean ridge basalt crust, generated at a spreading center, overlain by an off-axis seamount with ocean island basalt chemical characters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of multiple sediment sources and varying rates of sediment accumulation in the Celebes and Sulu seas have had significant impact on the processes of diagenesis, mineralization, and pore-fluid flow. Isotopic and mass-balance calculations help elucidate the various reactions taking place in these western Pacific basins, where ash alteration and basalt-seawater interactions are superimposed on the effects of sulfate oxidation of organic carbon and biogenic methane and of dolomitization of biogenic carbonates. Based on the shape of the calcium and magnesium depth profiles, two major reactive zones have been identified. The first is located near the zone of sulfate depletion and is characterized by carbonate recrystallization, dolomitization and ash alteration reactions at both Ocean Drilling Program Sites 767 and 768. The second reactive zone corresponds to the bottom of the sedimentary sequence and is characterized by alteration reactions in the basement (Site 767) and in the pyroclastic deposits beneath the sediment column (Site 768).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic fabric analyses from two North Atlantic drift deposits provide proxies for determining relative variations in the strength of abyssal flow over the last 10 my. The data show a cessation of current-controlled sedimentation at the shallower Feni Drift (2417 m) at the time of onset of Northern Hemisphere glaciation (2.6 Ma). Drift formation ended nearly 2 my earlier (4.2 Ma) at the deeper Gardar Drift (3220 m), implying stepwise reduction in deep-water flow. Relatively light delta18O values at the deeper Gardar Drift indicate a warmer, thus also more salty, water mass site prior to 6 Ma. We interpret this as representing Mediterranean Sea water, which flowed north at depths greater than that of the Feni Drift Site. The supply of Mediterranean Water to the North Atlantic was shut off as the Gibraltar Straits closed, causing the Messinian salinity crisis, and never returned to that position in the water column after the Mediterranean opened again.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The differential solubility of ferromanganese oxides can lead to stratigraphic separation of iron and manganese. Results of chemical analysis of a sequence of ferromanganese nodules overlying iron-rich crusts in northern Green Bay show that selec¬tive ion transport is important in concentrating manganese and associated trace elements near the oxygenated water-sediment interface. Manganese carbonate, which cements ferromanganese nodules, occurs in dark-gray silty sands that are located adjacent to the organic-rich muds of southern Green Bay. These muds contain an average of approximately 3.5 ppm (6x10-5M) interstitial Mn with 2.8 meq/l carbonate alkalinity. Thermodynamic calculation shows that interstitial water approaches equilibrium with MnCO3 in the upper 10 cm of sediment. This carbonate has a composition (Mn73Ca22Fe5)CO3 and has been identified as rhodochrosite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed 87Sr/86Sr ratios in foraminifera, pore fluids, and fish teeth for samples ranging in age from Eocene to Pleistocene from four Ocean Drilling Program sites distributed around the globe: Site 1090 in the Cape Basin of the Southern Ocean, Site 757 on the Ninetyeast Ridge in the Indian Ocean, Site 807 on the Ontong-Java Plateau in the western equatorial Pacific, and Site 689 on the Maud Rise in the Southern Ocean. Sr isotopic ratios for dated foraminifera consistently plot on the global seawater Sr isotope curve. For Sites 1090, 757, and 807 Sr isotopic values of the pore fluids are generally less radiogenic than contemporaneous seawater values, as are values for fossil fish teeth. In contrast, pore fluid 87Sr/86Sr values at Site 689 are more radiogenic than contemporaneous seawater, and the corresponding fish teeth also record more radiogenic values. Thus, Sr isotopic values preserved in fossil fish teeth are consistently altered in the direction of the pore fluid values; furthermore, there is a correlation between the magnitude of the offset between the pore fluids and the seawater curve, and the associated offset between the fish teeth and the seawater curve. These data suggest that the hydroxyfluorapatite of the fossil fish teeth continues to recrystallize and exchange Sr with its surroundings during burial and diagenesis. Therefore, Sr chemostratigraphy can be used to determine rough ages for fossil fish teeth in these cores, but cannot be used to fine-tune age models. In contrast to the Sr isotopic system, our Nd concentration data, combined with published isotopic and rare earth element data, suggest that fish teeth acquire Nd during early diagenesis while they are still in direct contact with seawater. The concentrations of Nd acquired at this stage are extremely high relative to the concentrations in surrounding pore fluids. As a result, Nd isotopes are not altered during burial and later diagenesis. Therefore, fossil fish teeth from a variety of marine environments preserve a reliable and robust record of deep seawater Nd isotopic compositions from the time of deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Firm stratigraphic correlations are needed to evaluate the global significance of unconformity bounded units (sequences). We correlate the well-developed uppermost Campanian and Maestrichtian sequences of the New Jersey Coastal Plain to the geomagnetic polarity time scale (GPTS) by integrating Sr-isotopic stratigraphy and biostratigraphy. To do this, we developed a Maestrichtian (ca. 73-65 Ma) Sr-isotopic reference section at Deep Sea Drilling Project Hole 525A in the southeastern Atlantic Ocean. Maestrichtian strata can then be dated by measuring their 87Sr/86Sr composition, calibrating to the GPTS of S. C. Cande and D. V. Kent (1993, personal commun.), and using the equation Age (Ma) = 37326.894-52639.89 (87Sr/86Sr). Sr-stratigraphic resolution for the Maestrichtian is estimated as +-1.2 to +-2 m.y. At least two unconformity-bounded units comprise the uppermost Campanian to Maestrichtian strata in New Jersey. The lower one, the Marshalltown sequence, is assigned to calcareous nannofossil Zones CC20/21 (~NC19) and CC22b (~NC20). It ranges in age from ~74.1 to 69.9 Ma based on Sr-isotope age estimates. The overlying Navesink sequence is assigned to calcareous nannoplankton Zones CC25-26 (~NC21-23); it ranges in age from 69.3 to 65 Ma based on Sr-isotope age estimates. The upper part of this sequence, the Tinton Formation, has no calcareous planktonic control; Sr-isotopes provide an age estimate of 66 +- 1.2 Ma (latest Maestrichtian). Sequence boundaries at the base and the top of the Marshalltown sequence match boundaries elsewhere in the Atlantic Coastal Plain (Owens and Gohn, 1985) and the inferred global sea-level record of Haq et al. (1987); they support eustatic changes as the mechanism controlling depositional history of this sequence. However, the latest Maestrichtian record in New Jersey does not agree with Haq et al. (1987); we attribute this to correlation and time-scale differences near the Cretaceous/Paleogene boundary. High sedimentation rates in the latest Maestrichtian of New Jersey (Shrewsbury Member of the Red Bank Formation and the Tinton Formation) suggest tectonic uplift and/or rapid progradation during deposition of the highstand systems tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theories explaining the origin of the abrupt, massive discharges of ice-rafted detritus (IRD) into the glacial North Atlantic (the Heinrich layers (HLs)) generally point to the Laurentide ice sheet as the sole source of these events, until it was found that the IRDs also originated from Icelandic and European ice sheets (Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005; Snoeckx et al., 1999, doi:10.1016/S0025-3227(98)00168-6; Grousset et al., 2000, doi:10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2). This apparent contradiction must be reconciled as it raises fundamental questions about the mechanism(s) of HL origin. We have analyzed two ~12 cm thick HLs in an ultrahigh-resolution mode (1-2 century intervals) in a mid-Atlantic ridge piston core. The d18O record (N. pachyderma left coiling) reveals strong excursions induced by the melting of the icebergs; these excursions are associated with a strong decrease in the amount of planktic foraminafersand with a 3°C cooling of the surface waters. Counts of coarse detrital grains reveal that IRD are deposited according to a typical sequence (1) volcanic glass, (2) quartz and feldspars, (3) detrital carbonate, that implies a chronology in the melting of the differentpan-Atlantic ice sheets. Sr and Nd isotopic composition confirm that in both Heinrich layers H1 and H2, "precursor" IRD came from first Europe/Iceland, followed then by Laurentide-derived IRD. An internal cyclicity can be identified: during H1 and H2, about four to six major, abrupt discharges occurred roughly on a century timescale. The d13C and d15N records reveal that dominant inputs of continent-derived organic matter are associated with IRD within the HLs, hiding the plankton productivity signal.