972 resultados para Strictly hyperbolic polynomial
Resumo:
This thesis studies Frobenius traces in Galois representations from two different directions. In the first problem we explore how often they vanish in Artin-type representations. We give an upper bound for the density of the set of vanishing Frobenius traces in terms of the multiplicities of the irreducible components of the adjoint representation. Towards that, we construct an infinite family of representations of finite groups with an irreducible adjoint action.
In the second problem we partially extend for Hilbert modular forms a result of Coleman and Edixhoven that the Hecke eigenvalues ap of classical elliptical modular newforms f of weight 2 are never extremal, i.e., ap is strictly less than 2[square root]p. The generalization currently applies only to prime ideals p of degree one, though we expect it to hold for p of any odd degree. However, an even degree prime can be extremal for f. We prove our result in each of the following instances: when one can move to a Shimura curve defined by a quaternion algebra, when f is a CM form, when the crystalline Frobenius is semi-simple, and when the strong Tate conjecture holds for a product of two Hilbert modular surfaces (or quaternionic Shimura surfaces) over a finite field.
Resumo:
We report the formulation of an ABCD matrix for reflection and refraction of Gaussian light beams at the surface of a parabola of revolution that separate media of different refractive indices based on optical phase matching. The equations for the spot sizes and wave-front radii of the beams are also obtained by using the ABCD matrix. With these matrices, we can more conveniently design and evaluate some special optical systems, including these kinds of elements. (c) 2005 Optical Society of America
Resumo:
The problem of the representation of signal envelope is treated, motivated by the classical Hilbert representation in which the envelope is represented in terms of the received signal and its Hilbert transform. It is shown that the Hilbert representation is the proper one if the received signal is strictly bandlimited but that some other filter is more appropriate in the bandunlimited case. A specific alternative filter, the conjugate filter, is proposed and the overall envelope estimation error is evaluated to show that for a specific received signal power spectral density the proposed filter yields a lower envelope error than the Hilbert filter.
Resumo:
Let PK, L(N) be the number of unordered partitions of a positive integer N into K or fewer positive integer parts, each part not exceeding L. A distribution of the form
Ʃ/N≤x PK,L(N)
is considered first. For any fixed K, this distribution approaches a piecewise polynomial function as L increases to infinity. As both K and L approach infinity, this distribution is asymptotically normal. These results are proved by studying the convergence of the characteristic function.
The main result is the asymptotic behavior of PK,K(N) itself, for certain large K and N. This is obtained by studying a contour integral of the generating function taken along the unit circle. The bulk of the estimate comes from integrating along a small arc near the point 1. Diophantine approximation is used to show that the integral along the rest of the circle is much smaller.
Resumo:
We approach the problem of automatically modeling a mechanical system from data about its dynamics, using a method motivated by variational integrators. We write the discrete Lagrangian as a quadratic polynomial with varying coefficients, and then use the discrete Euler-Lagrange equations to numerically solve for the values of these coefficients near the data points. This method correctly modeled the Lagrangian of a simple harmonic oscillator and a simple pendulum, even with significant measurement noise added to the trajectories.
Resumo:
在星间激光通信中,涉及对大口径衍射极限激光波面的检测,为保证测量精度,必须严格控制波面十涉仪镜子的自重和温度变形。采用有限元方法对大型干涉仪镜子在不同支承方式下的表面变形进行了分析,结果表明,接触角为180°的钢带支承是较好的支承方式,反射镜表面变形峰-谷(P-V)值仅为1.35nm,均方根(RMS)值为0.363nm根据这一结论,设计了一个同定支承点与浮动支承相结合的超静定钢带支承结构。在该结构下,分析了镜子轴向、径向、周向的温度梯度效应,分析数据表明,镜子的热弹性变形远大于自重变形,建议采取一定的温控
Resumo:
Compiled by Patricia Ann Skaptason. "This bibliography is designed to bring together literature on the fin whale, published from 1940 through 1970. newspaper articles, legal matgerial (except that by the International Whaling Commission), biochemical studies, juvenile and strictly narrative works have been omitted"
Resumo:
No ensino de língua nacional, concordância é um dos tópicos em cujo aprendizado observa dificuldade por parte dos discentes, principalmente pelo grande número de regras facultativas das gramáticas, que muitas vezes não levam em conta o uso formal real da língua. Este trabalho visa a descrever esse uso, a partir da observação de um corpus do caderno opinião de jornais de grande circulação, confrontando os resultados com as prescrições da norma gramatical escolar, a fim de separar, em tais prescrições, a parte aproveitável da não coincidente com a realidade do corpus, se for o caso. Pretende-se, dessa forma, contribuir para a boa qualidade do ensino da língua portuguesa nos níveis fundamental e médio, especificamente no que se refere à concordância
Resumo:
An explicit formula is obtained for the coefficients of the cyclotomic polynomial Fn(x), where n is the product of two distinct odd primes. A recursion formula and a lower bound and an improvement of Bang’s upper bound for the coefficients of Fn(x) are also obtained, where n is the product of three distinct primes. The cyclotomic coefficients are also studied when n is the product of four distinct odd primes. A recursion formula and upper bounds for its coefficients are obtained. The last chapter includes a different approach to the cyclotomic coefficients. A connection is obtained between a certain partition function and the cyclotomic coefficients when n is the product of an arbitrary number of distinct odd primes. Finally, an upper bound for the coefficients is derived when n is the product of an arbitrary number of distinct and odd primes.
Resumo:
The problem of global optimization of M phase-incoherent signals in N complex dimensions is formulated. Then, by using the geometric approach of Landau and Slepian, conditions for optimality are established for N = 2 and the optimal signal sets are determined for M = 2, 3, 4, 6, and 12.
The method is the following: The signals are assumed to be equally probable and to have equal energy, and thus are represented by points ṡi, i = 1, 2, …, M, on the unit sphere S1 in CN. If Wik is the halfspace determined by ṡi and ṡk and containing ṡi, i.e. Wik = {ṙϵCN:| ≥ | ˂ṙ, ṡk˃|}, then the Ʀi = ∩/k≠i Wik, i = 1, 2, …, M, the maximum likelihood decision regions, partition S1. For additive complex Gaussian noise ṅ and a received signal ṙ = ṡiejϴ + ṅ, where ϴ is uniformly distributed over [0, 2π], the probability of correct decoding is PC = 1/πN ∞/ʃ/0 r2N-1e-(r2+1)U(r)dr, where U(r) = 1/M M/Ʃ/i=1 Ʀi ʃ/∩ S1 I0(2r | ˂ṡ, ṡi˃|)dσ(ṡ), and r = ǁṙǁ.
For N = 2, it is proved that U(r) ≤ ʃ/Cα I0(2r|˂ṡ, ṡi˃|)dσ(ṡ) – 2K/M. h(1/2K [Mσ(Cα)-σ(S1)]), where Cα = {ṡϵS1:|˂ṡ, ṡi˃| ≥ α}, K is the total number of boundaries of the net on S1 determined by the decision regions, and h is the strictly increasing strictly convex function of σ(Cα∩W), (where W is a halfspace not containing ṡi), given by h = ʃ/Cα∩W I0 (2r|˂ṡ, ṡi˃|)dσ(ṡ). Conditions for equality are established and these give rise to the globally optimal signal sets for M = 2, 3, 4, 6, and 12.
Resumo:
Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.
Resumo:
Topography of a granite surface has an effect on the vertical positioning of a wafer stage in a lithographic tool, when the wafer stage moves on the granite. The inaccurate measurement of the topography results in a bad leveling and focusing performance. In this paper, an in situ method to measure the topography of a granite surface with high accuracy is present. In this method, a high-order polynomial is set up to express the topography of the granite surface. Two double-frequency laser interferometers are used to measure the tilts of the wafer stage in the X- and Y-directions. From the sampling tilts information, the coefficients of the high-order polynomial can be obtained by a special algorithm. Experiment results shows that the measurement reproducibility of the method is better than 10 nm. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.
The following is my formulation of the Cesari fixed point method:
Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.
Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:
(i) Py = PWy.
(ii) y = (P + (I - P)W)y.
Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:
(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).
(2) The function y just defined is continuous from PГ into B.
(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.
Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).
The three theorems of this thesis can now be easily stated.
Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.
Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:
(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖
(2)P2Г is convex.
Then i(Г, W, P1) = i(Г, W, P2).
Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).
Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.
Resumo:
The lattice anomalies and magnetic states in the (Fe100-xMnx)5Si3 alloys have been investigated. Contrary to what was previously reported, results of x-ray diffraction show a second phase (α') present in Fe-rich alloys and therefore strictly speaking a complete solid solution does not exist. Mössbauer spectra, measured as a function of composition and temperature, indicate the presence of two inequivalent sites, namely 6(g) site (designated as site I) and 4(d) (site II). A two-site model (TSM) has been introduced to interpret the experimental findings. The compositional variation of lattice parameters a and c, determined from the x-ray analysis, exhibits anomalies at x = 22.5 and x = 50, respectively. The former can be attributed to the effect of a ferromagnetic transition; while the latter is due to the effect of preferential substitution between Fe and Mn atoms according to TSM.
The reduced magnetization of these alloys deduced from magnetic hyperfine splittings has been correlated with the magnetic transition temperatures in terms of the molecular field theory. It has been found from both the Mössbauer effect and magnetization measurements that for composition 0 ≤ x ˂ 50 both sites I and II are ferromagnetic at liquid-nitrogen temperature and possess moments parallel to each other. In the composition range 50 ˂ x ≤ 100 , the site II is antiferromagnetic whereas site I is paramagnetic even at a temperature below the bulk Néel temperatures. In the vicinity of x = 50 however, site II is in a state of transition between ferromagnetism and antiferromagnetism. The present study also suggests that only Mn in site II are responsible for the antiferromagnetism in Mn5Si3 contrary to a previous report.
Electrical resistance has also been measured as a function of temperature and composition. The resistive anomalies observed in the Mn-rich alloys are believed to result from the effect of the antiferromagnetic Brillouin zone on the mobility of conduction electrons.