993 resultados para Stratigraphy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High resolution stratigraphy based on oxygen isotope ratios of the planktonic foraminifers Neogloboquadrina dutertrei (d'Orbigny), Globigeriniodes ruber (d'Orbigny), and Globigerina bulloides (d'Orbigny), magnetic susceptibility, and calcium carbonate content covers the sedimentary record of ODP Hole 728A drilled on the Oman Margin from approximately 10 k.y. to 525 k.y., comprising isotopic stages 1-13. Below stage 13 isotopic stage boundaries cannot be defined with certainty in our data. Sediment accumulation rates were calculated from the isotopic record of N. dutertrei by matching it with the age model SPECMAP curve. During the glacial periods sediment accumulation rates were higher than during the interglacial periods, reflecting increased input from the shelf during low-stands of sea level and increased eolian input. Periodograms for the past 524 k.y. on oxygen isotope records of N. dutertrei, G. ruber, and G. bulloides, on calcium carbonate content, magnetic susceptibility, and on a foraminiferal fragmentation record show powers matching the Milankovitch periodicities. High powers are concentrated around 103 k.y. In the spectra of oxygen isotope ratios of N. dutertrei, magnetic susceptibility, and foraminiferal fragmentation these are significant at the 80% confidence level with respect to a first order autoregressive model. Power concentrations near 43 k.y., matching obliquity, are present but subdued in all spectra. Power concentrations near 23 k.y., matching precession, are significant in the spectra of the oxygen isotope record of N. dutertrei, magnetic susceptibility, and calcium carbonate content record. Fragmentation of planktonic foraminifers increased during the interglacial periods. This is attributed to dissolution of the tests in an expanded oxygen minimum zone (OMZ), where undersaturation of calcium carbonate is caused by enhanced production in the euphotic zone, which would suggest stronger monsoonal induced upwelling during interglacial periods. Extension of the OMZ could also be increased by outflow of low oxygen marginal basin bottom water.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 178, we drilled three sites on sediment drifts deposited on the continental rise on the western margin of the Antarctic Peninsula. These hemipelagic drifts were targeted for their potential to preserve a continuous record of the behavior of the West Antarctic Ice Sheet over the last 10 m.y. It has been proposed that drift development is linked to advances and retreats of the Antarctic continental ice sheet (Pudsey and Camerlenghi, 1998, doi:10.1017/S0954102098000376, and references therein; Barker, Camerlenghi, Acton, et al., 1999, doi:10.2973/odp.proc.ir.178.1999). However, the sediment is characterized by a very low carbonate content, with foraminifers restricted to very narrow intervals. This lack of carbonate precludes the construction of a delta18O or CaCO3 stratigraphy, depriving these sites of an important chronologic tool and global ice volume proxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Downcore cyclic variation in high-resolution nannofossil abundance records from mid-Pliocene equatorial Atlantic ODP Sites 662 and 926 demonstrate the direct response by several Pliocene taxa (notably Discoaster, Sphenolithus and Florisphaera profunda) to orbitally forced climatic variation. In particular, these records display strong obliquity and precessional signals reflecting primarily high latitude, Southern hemisphere changes influencing upwelling intensity and local low-latitude, insolation-driven climatic changes (via the productivity and/or turbidity influence of Amazon-sourced terrigenous material) at Sites 622 and 926 respectively. In seasonal studies of coccolithophorid assemblages, only part of the variation observed can be explained by abiotic processes, so it is perhaps not surprising that in this study few Pliocene nannofossil taxa demonstrate significant correlations with each other or with physical environmental parameters. Only some variance in nannofossil abundances can be explained by the primary controls of temperature and productivity. The rest is attributed to nonlinear responses to climatic changes; biotic processes such as grazing, predation, viral infection and competition, and/or, abiotic factors for which there is no readily available proxy (e.g. salinity). The lack of strong, consistent intra- and inter-relationships of the nannoflora and the environment reflects an ecologically complex, differentiated original community producing a complex integrated signal transmitted into the fossil record.