919 resultados para Storm surges.
Resumo:
Water held in the unsaturated zone is important for agriculture and construction and is replenished by infiltrating rainwater. Monitoring the soil water content of clay soils using ground-penetrating radar (GPR) has not been researched, as clay soils cause attenuation of GPR signal. In this study, GPR common-midpoint soundings (CMPs) are used in the clayey soils of the Miller Run floodplain to monitor changes in the soil water content (SWC) before and after rainfall events. GPR accomplishes this task because increases in water content will increase the dielectric constant of the subsurface material, and decrease the velocity of the GPR wave. Using an empirical relationship between dielectric constant and SWC, the Topp relation, we are able to calculate a SWC from these velocity measurements. Non-invasive electromagnetics, resistivity, and seismic were performed, and from these surveys, the layering at the field site was delineated. EM characterized the horizontal variation of the soil, allowing us to target the most clay rich area. At the CMP location, resistivity indicates the vertical structure of the subsurface consists of a 40 cm thick layer with a resistivity of 100 ohm*m. Between 40 cm and 1.5 m is a layer with a resistivity of 40 ohm*m. The thickness estimates were confirmed with invasive auger and trenching methods away from the CMP location. GPR CMPs were collected relative to a July 2013 and September 2013 storm. The velocity observations from the CMPs had a precision of +/- 0.001 m/ns as assessed by repeat analysis. In the case of both storms, the GPR data showed the expected relationship between the rainstorms and calculated SWC, with the SWC increasing sharply after the rainstorm and decreasing as time passed. We compared these data to auger core samples collected at the same time as the CMPs were taken, and the volumetric analysis of the cores confirmed the trend seen in the GPR, with SWC values between 3 and 5 percent lower than the GPR estimates. Our data shows that we can, with good precision, monitor changes in the SWC of conductive soils in response to rainfall events, despite the attenuation induced by the clay.
Resumo:
Fluctuations of food availability, habitat quality, and environmental conditions throughout the year have been implicated in the breeding success and survival of migratory birds. Levels of circulating corticosterone, the hormone involved in energy balance and the stress response in birds, are also affected by fluctuations in these variables, and also play a role in self-maintenance and survival. In addition to changes in behaviors and resource allocation, the metabolic effects of corticosterone increase the amount of free radicals in the body, which can cause oxidative stress and damage lipids and DNA. In this thesis, I assessed if diet and physiology during the breeding and non-breeding seasons contributed to the reproductive success, survival, and oxidative stress of a long-lived migratory seabird, Leach’s storm-petrel (Oceanodroma leucorhoa). I tested the hypotheses that 1.) diet and physiology throughout the breeding and non-breeding seasons predict reproductive effort; and 2.) corticosterone affects telomere length, a measure of oxidative damage. Through analyses of stable isotopes, corticosterone, and antioxidant capacity, I found that although there was variation in these measures of diet and physiology within the population, none of these factors during the breeding or non-breeding seasons correlated with reproductive effort or success. I also found that feather and plasma corticosterone did not predict telomere length. The life history strategies of Leach’s storm-petrels appear to be complex, and many factors likely contribute to self-maintenance and the decision to breed. Long-term monitoring of these variables may help identify relationships between trends in oceanographic variables during both the breeding and non-breeding seasons with reproductive effort and success, and survival.
Resumo:
Human development causes degradation of stream ecosystems due to impacts on channel morphology, hydrology, and water quality. Urbanization, the second leading cause of stream impairment, increases the amount of impervious surface cover, thus reducing infiltration and increasing surface runoff of precipitation, which ultimately affects stream hydrologic process and aquatic biodiversity. The main objective of this study was to assess the overall health of Miller Run, a small tributary of the Bull Run and Susquehanna River watersheds, through an integrative hydrologic and water quality approach in order to determine the degree of Bucknell University’s impact on the stream. Hydrologic conditions, including stage and discharge, and water quality conditions, including total suspended solids, ion, nutrient, and dissolved metal concentrations, specific conductivity, pH, and temperature, were measured and evaluated at two sampling sites (upstream and downstream of Bucknell’s main campus) during various rain events from September 2007 to March 2008. The primary focus of the stream analysis was based on one main rain event on 26 February 2008. The results provided evidence that Miller Run is impacted by Bucknell’s campus. From a hydrologic perspective, the stream’s hydrograph showed the exact opposite pattern of what would be expected from a ‘normal’ stream. Miller run had a flashier downstream hydrograph and a broader upstream hydrograph, which was more than likely due to the increased amount of impervious surface cover throughout the downstream half of the watershed. From a water quality perspective, sediment loads increased at a faster rate and were significantly higher downstream compared to upstream. These elevated sediment concentrations were probably the combined result of sediment runoff from upstream and downstream construction sites that were being developed over the course of the study. Sodium, chloride, and potassium concentrations, in addition to specific conductivity, also significantly increased downstream of Bucknell’s campus due to the runoff of road salts. Calcium and magnesium concentrations did not appear to be impacted by urbanization, although they did demonstrate a significant dilution effect downstream. The downstream site was not directly affected by elevated nitrate concentrations; however, soluble reactive phosphorus concentrations tended to increase downstream and ammonium concentrations significantly peaked partway through the rain event downstream. These patterns suggest that Miller Run may be impacted by nutrient runoff from the golf course, athletic fields, and/or fertilizers applications on the main campus. Dissolved manganese and iron concentrations also appeared to slightly increase downstream, demonstrating the affect of urban runoff from roads and parking lots. pH and temperature both decreased farther downstream, but neither showed a significant impact of urbanization. More studies are necessary to determine how Miller Run responds to changes in season, climate, precipitation intensity, and land-use. This study represents the base-line analysis of Miller Run’s current hydrologic and water quality conditions; based on these initial findings, Bucknell should strongly consider modifications to improve storm water management practices and to reduce the campus’s overall impact on the stream in order to enhance and preserve the integrity of its natural water resources.
Resumo:
Le Siège de Calais, hailed by its author in 1765 as France’s ‘première tragédie nationale’, rolled into Paris like a storm. Pierre-Laurent de Belloy’s play about French bravery during the Hundred Years’ War (1337-1453) appeared on the heels of France’s defeat in the Seven Years’ War (1756-1763). Le Siège de Calais was performed throughout Europe and published numerous times during the second half of the eighteenth century. De Belloy emerged as a national hero, receiving prizes from Louis XV, accolades from the city of Calais, and membership to the prestigious Académie française. Since the French Revolution, however, the popularity of Le Siège de Calais has eclipsed, owing to its overt glorification of France’s royal machine. Several hundred years later, the play warrants a fresh look from a holistic perspective. De Belloy’s tragedy and the varied responses it provoked – many of which are included in this edition – offer complex representations of French political history and patriotic sentiment. Le Siège de Calais reveals conflicting images of gender roles, political debate and family values during the twilight of the Ancien régime; it also constituted one of the last moments when serious drama asserted its role as a popular force.
Resumo:
This study summarises all the accessible data on old German chemical weapons dumped in the Baltic Sea. Mr. Goncharov formulated a concept of ecological impact evaluation of chemical warfare agents (CWA) on the marine environment and structured a simulation model adapted to the specific character of the hydrological condition and hydrobiological subjects of the Bornholm Deep. The mathematical model he has created describes the spreading of contaminants by currents and turbulence in the near bottom boundary layer. Parameters of CWA discharge through corrosion of canisters were given for various kinds of bottom sediments with allowance for current velocity. He created a method for integral estimations and a computer simulation model and completed a forecast for CWA "Mustard", which showed that in normal hydrometeorological conditions there are local toxic plumes drifting along the bottom for a distance of up to several kilometres. With storm winds the toxic plumes from separate canisters interflow and lengthen and can reach fishery areas near Bornholm Island. When salt water from the North Sea flows in, the length of toxic zones can increase up to and over 100 kilometres and toxic water masses can spread into the northern Baltic. On this basis, Mr. Goncharov drew up recommendations to reduce dangers for human ecology and proposed the creation of a special system for the forecasting and remote sensing of the environmental conditions of CWA burial places.
Resumo:
One of the major challenges for a mission to the Jovian system is the radiation tolerance of the spacecraft (S/C) and the payload. Moreover, being able to achieve science observations with high signal to noise ratios (SNR), while passing through the high flux radiation zones, requires additional ingenuity on the part of the instrument provider. Consequently, the radiation mitigation is closely intertwined with the payload, spacecraft and trajectory design, and requires a systems-level approach. This paper presents a design for the Io Volcano Observer (IVO), a Discovery mission concept that makes multiple close encounters with Io while orbiting Jupiter. The mission aims to answer key outstanding questions about Io, especially the nature of its intense active volcanism and the internal processes that drive it. The payload includes narrow-angle and wide-angle cameras (NAC and WAC), dual fluxgate magnetometers (FGM), a thermal mapper (ThM), dual ion and neutral mass spectrometers (INMS), and dual plasma ion analyzers (PIA). The radiation mitigation is implemented by drawing upon experiences from designs and studies for missions such as the Radiation Belt Storm Probes (RBSP) and Jupiter Europa Orbiter (JEO). At the core of the radiation mitigation is IVO's inclined and highly elliptical orbit, which leads to rapid passes through the most intense radiation near Io, minimizing the total ionizing dose (177 krads behind 100 mils of Aluminum with radiation design margin (RDM) of 2 after 7 encounters). The payload and the spacecraft are designed specifically to accommodate the fast flyby velocities (e.g. the spacecraft is radioisotope powered, remaining small and agile without any flexible appendages). The science instruments, which collect the majority of the high-priority data when close to Io and thus near the peak flux, also have to mitigate transient noise in their detectors. The cameras use a combination of shielding and CMOS detectors with extremely fast readout to mi- imize noise. INMS microchannel plate detectors and PIA channel electron multipliers require additional shielding. The FGM is not sensitive to noise induced by energetic particles and the ThM microbolometer detector is nearly insensitive. Detailed SNR calculations are presented. To facilitate targeting agility, all of the spacecraft components are shielded separately since this approach is more mass efficient than using a radiation vault. IVO uses proven radiation-hardened parts (rated at 100 krad behind equivalent shielding of 280 mils of Aluminum with RDM of 2) and is expected to have ample mass margin to increase shielding if needed.
Resumo:
Using a highly resolved atmospheric general circulation model, the impact of different glacial boundary conditions on precipitation and atmospheric dynamics in the North Atlantic region is investigated. Six 30-yr time slice experiments of the Last Glacial Maximum at 21 thousand years before the present (ka BP) and of a less pronounced glacial state – the Middle Weichselian (65 ka BP) – are compared to analyse the sensitivity to changes in the ice sheet distribution, in the radiative forcing and in the prescribed time-varying sea surface temperature and sea ice, which are taken from a lower-resolved, but fully coupled atmosphere-ocean general circulation model. The strongest differences are found for simulations with different heights of the Laurentide ice sheet. A high surface elevation of the Laurentide ice sheet leads to a southward displacement of the jet stream and the storm track in the North Atlantic region. These changes in the atmospheric dynamics generate a band of increased precipitation in the mid-latitudes across the Atlantic to southern Europe in winter, while the precipitation pattern in summer is only marginally affected. The impact of the radiative forcing differences between the two glacial periods and of the prescribed time-varying sea surface temperatures and sea ice are of second order importance compared to the one of the Laurentide ice sheet. They affect the atmospheric dynamics and precipitation in a similar but less pronounced manner compared with the topographic changes.
Resumo:
BACKGROUND: Clustering ventricular arrhythmias are the consequence of acute ventricular electrical instability and represent a challenge in the management of the growing number of patients with an implantable cardioverter-defibrillator (ICD). Triggering factors can rarely be identified. OBJECTIVES: Several studies have revealed seasonal variations in the frequency of cardiovascular events and life-threatening arrhythmias, and we sought to establish whether seasonal factors may exacerbate ventricular electrical instability leading to arrhythmia clusters and electrical storm. METHODS: Two hundred and fourteen consecutive defibrillator recipients were followed-up during 3.3 +/- 2.2 years. Arrhythmia cluster was defined as the occurrence of three or more arrhythmic events triggering appropriate defibrillator therapies within 2 weeks. Time intervals between two clusters were calculated for each month and each season, and were compared using Kruskal-Wallis test and Wilcoxon-Mann-Whitney test with Bonferroni adjustment. RESULTS: During a follow-up of 698 patient years, 98 arrhythmia clusters were observed in 51 patients; clustering ventricular arrhythmias were associated with temporal variables; they occurred more frequently in the winter and spring months than during the summer and fall. Accordingly, the time intervals between two clusters were significantly shorter during winter and spring (median and 95% CI): winter 16 (5-19), spring 11.5 (7-25), summer 34.5 (15-55), fall 50.5 (19-65), P = 0.0041. CONCLUSION: There are important seasonal variations in the incidence of arrhythmia clusters in ICD recipients. Whether these variations are related to environmental factors, change in physical activity, or psychological factors requires further study.
Resumo:
Pituitary apoplexy, diabetes insipidus, thyroid storm, myxedema coma, parathyrotoxic crisis, hypocalcemia tetany, pheochromocytoma and Addison crisis, diabetic ketoacidosis, diabetic hyperosmolar nonketotic coma, hypoglycemia and carcinoid crisis are the most important endocrine crises. Some of them are common, others very rare. All physicians nevertheless need to have at least a basic knowledge of all of them, since symptoms and signs of endocrine crises overlap with those of other severe disease states, and the failure to recognise endocrine crises as such and to begin rapidly the specific therapy can have fatal consequences.
Resumo:
Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).
Resumo:
The effects of climate change are expected to be very severe in arid regions. The Sonora River Basin, in the northwestern state of Sonora, Mexico, is likely to be severely affected. Some of the anticipated effects include precipitation variability, intense storm events, higher overall temperatures, and less available water. In addition, population in Sonora, specifically the capital city of Hermosillo, is increasing at a 1.5% rate and current populations are near 700,000. With the reduction in water availability and an increase in population, Sonora, Mexico is expected to experience severe water resource issues in the near future. In anticipation of these changes, research is being conducted in an attempt to improve water management in the Sonora River Basin, located in the northwestern part of Sonora. This research involves participatory modeling techniques designed to increase water manager awareness of hydrological models and their use as integrative tools for water resource management. This study was conducted as preliminary research for the participatory modeling grant in order to gather useful information on the population being studied. This thesis presents research from thirty-four in-depth interviews with water managers, citizens, and agricultural producers in Sonora, Mexico. Data was collected on perceptions of water quantity and quality in the basin, thoughts on current water management practices, perceptions of climate change and its management, experience with, knowledge of, and trust in hydrological models as water management tools. Results showed that the majority of interviewees thought there was not enough water to satisfy their daily needs. Most respondents also agreed that the water available was of good quality, but that current management of water resources was ineffective. Nearly all interviewees were aware of climate change and thought it to be anthropogenic. May reported experiencing higher temperatures, precipitation changes, and higher water scarcity and attributed those fluctuations to climate change. 65% of interviewees were at least somewhat familiar with hydrological models, though only 28% had ever used them or their output. Even with model usage results being low, 100% of respondents believed hydrological models to be very useful water management tools. Understanding how water, climate change, and hydrological models are perceived by this population of people is essential to improving their water management practices in the face of climate change.
Resumo:
The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.
Resumo:
Anthropogenic activities have increased phosphorus (P) loading in tributaries to the Laurentian Great Lakes resulting in eutrophication in small bays to most notably, Lake Erie. Changes to surface water quality from P loading have resulted in billions of dollars in damage and threaten the health of the world’s largest freshwater resource. To understand the factors affecting P delivery with projected increasing urban lands and biofuels expansion, two spatially explicit models were coupled. The coupled models predict that the majority of the basin will experience a significant increase in urban area P sources while the agriculture intensity and forest sources of P will decrease. Changes in P loading across the basin will be highly variable spatially. Additionally, the impacts of climate change on high precipitation events across the Great Lakes were examined. Using historical regression relationships on phosphorus concentrations, key Great Lakes tributaries were found to have future changes including decreasing total loads and increases to high-flow loading events. The urbanized Cuyahoga watersheds exhibits the most vulnerability to these climate-induced changes with increases in total loading and storm loading , while the forested Au Sable watershed exhibits greater resilience. Finally, the monitoring network currently in place for sampling the amount of phosphorus entering the U.S. Great Lakes was examined with a focus on the challenges to monitoring. Based on these interviews, the research identified three issues that policy makers interested in maintaining an effective phosphorus monitoring network in the Great Lakes should consider: first, that the policy objectives driving different monitoring programs vary, which results in different patterns of sampling design and frequency; second, that these differences complicate efforts to encourage collaboration; and third, that methods of funding sampling programs vary from agency to agency, further complicating efforts to generate sufficient long-term data to improve our understanding of phosphorus into the Great Lakes. The dissertation combines these three areas of research to present the potential future impacts of P loading in the Great Lakes as anthropogenic activities, climate and monitoring changes. These manuscripts report new experimental data for future sources, loading and climate impacts on phosphorus.
Resumo:
Biographische Narrative gehören in der Neuzeit zum festen Erzählinventar und werden gerade im Realismus häufig eingesetzt. Im „Schimmelreiter“ (1888) inszeniert Storm ein raffiniertes Spiel mit biographischen Mustern. In traditionellen Lesarten erscheint Hauke Haiens Lebensweg entweder durch den Aberglauben oder die freie Vernunft und Tatkraft bestimmt. Weiß man, dass Storm aufmerksam den wissenschaftlichen Wandel des Menschenbildes im 19. Jahrhundert verfolgt hat, liegt eine dritte biographische Deutung nahe: Der Deichgraf trägt psychopathische Züge eines Neurasthenikers, der sich verbissen auf die Rolle des Aufklärers konzentriert und deshalb die Grenzen seiner eigenen Natur nicht richtig einzuschätzen vermag.
Resumo:
Most intense cold surges and associated frost events in southern and southeastern Brazil are characterized by a large amplitude trough over South America extending toward tropical latitudes and a ridge to the west of it over the Pacific Ocean. In this study, potential vorticity (PV) streamers serve to examine the flow condition leading to cold surges. Case studies suggest that several PV anomalies are related to cold surge episodes: (1) the potential vorticity unit (2-PVU) isoline upstream of South America becomes progressively more distorted prior and during the cold surge episode, indicating a flow situation which is conducive for Rossby wave breaking and hence a flow which strongly deviates from zonality; (2) the initial stage of a cold surge episode is characterized by a northward bulging of high-PV air to the east of the Andes, resulting in a PV streamer whose northern end reaches Uruguay and southeastern Brazil; the strong PV gradient on its western flank constitutes a flow configuration that induces and maintains the transport of sub-Antarctic air toward the subtropics; (3) a distinct negative PV anomaly, a blocking, originates over the eastern South Pacific, upstream of the South America sector. A composite analysis of 27 cold surges is performed for stratospheric PV streamer frequency on several isentropic surfaces. It reveals that equatorward wave breaking over South America and the western South Atlantic represents an important potential component of the dynamics of intense cold surges. The indications are most pronounced around the isentropic levels of 320 K and immediately before the day with largest temperature drops over subtropical Brazil.