993 resultados para Stochastic Optimization
Resumo:
To improve the welfare of the rural poor and keep them in the countryside, the government of Botswana has been spending 40% of the value of agricultural GDP on agricultural support services. But can investment make smallholder agriculture prosperous in such adverse conditions? This paper derives an answer by applying a two-output six-input stochastic translog distance function, with inefficiency effects and biased technical change to panel data for the 18 districts and the commercial agricultural sector, from 1979 to 1996 This model demonstrates that herds are the most important input, followed by draft power. land and seeds. Multilateral indices for technical change, technical efficiency and total factor productivity (TFP) show that the technology level of the commercial agricultural sector is more than six times that of traditional agriculture and that the gap has been increasing, due to technological regression in traditional agriculture and modest progress in commercial agriculture. Since the levels of efficiency are similar, the same patient is repeated by the TFP indices. This result highlights the policy dilemma of the trade-off between efficiency and equity objectives.
Resumo:
This paper introduces a simple futility design that allows a comparative clinical trial to be stopped due to lack of effect at any of a series of planned interim analyses. Stopping due to apparent benefit is not permitted. The design is for use when any positive claim should be based on the maximum sample size, for example to allow subgroup analyses or the evaluation of safety or secondary efficacy responses. A final frequentist analysis can be performed that is valid for the type of design employed. Here the design is described and its properties are presented. Its advantages and disadvantages relative to the use of stochastic curtailment are discussed. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The influence, was investigated, of abiotic parameters on the isolation of protoplasts from in vitro seedling cotyledons of white lupin. The protoplasts were found to be competent in withstanding a wide range of osmotic potentials of the enzyme medium, however, −2.25 MPa (0.5 M mannitol), resulted in the highest yield of protoplasts. The pH of the isolation medium also had a profound effect on protoplast production. Vacuum infiltration of the enzyme solution into the cotyledon tissue resulted in a progressive drop in the yield of protoplasts. The speed and duration of orbital agitation of the cotyledon tissue played a significant role in the release of protoplasts and a two step (stationary-gyratory) regime was found to be better than the gyratory-only system.
Resumo:
Metallized plastics have recently received significant interest for their useful applications in electronic devices such as for integrated circuits, packaging, printed circuits and sensor applications. In this work the metallized films were developed by electroless copper plating of polyethylene films grafted with vinyl ether of monoethanoleamine. There are several techniques for metal deposition on surface of polymers such as evaporation, sputtering, electroless plating and electrolysis. In this work the metallized films were developed by electroless copper plating of polyethylene films grafted with vinyl ether of monoethanoleamine. Polyethylene films were subjected to gamma-radiation induced surface graft copolymerization with vinyl ether of monoethanolamine. Electroless copper plating was carried out effectively on the modified films. The catalytic processes for the electroless copper plating in the presence and the absence of SnCl2 sensitization were studied and the optimum activation conditions that give the highest plating rate were determined. The effect of grafting degree on the plating rate is studied. Electroless plating conditions (bath additives, pH and temperature) were optimized. Plating rate was determined gravimetrically and spectrophotometrically at different grafting degrees. The results reveal that plating rate is a function of degree of grafting and increases with increasing grafted vinyl ether of monoethanolamine onto polyethylene. It was found that pH 13 of electroless bath and plating temperature 40°C are the optimal conditions for the plating process. The increasing of grafting degree results in faster plating rate at the same pH and temperature. The surface morphology of the metallized films was investigated using scanning electron microscopy (SEM). The adhesion strength between the metallized layer and grafted polymer was studied using tensile machine. SEM photos and adhesion measurements clarified that uniform and adhered deposits were obtained under optimum conditions.
Resumo:
This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.
Resumo:
A technique is presented for locating and tracking objects in cluttered environments. Agents are randomly distributed across the image, and subsequently grouped around targets. Each agent uses a weightless neural network and a histogram intersection technique to score its location. The system has been used to locate and track a head in 320x240 resolution video at up to 15fps.
Resumo:
A novel Swarm Intelligence method for best-fit search, Stochastic Diffusion Search, is presented capable of rapid location of the optimal solution in the search space. Population based search mechanisms employed by Swarm Intelligence methods can suffer lack of convergence resulting in ill defined stopping criteria and loss of the best solution. Conversely, as a result of its resource allocation mechanism, the solutions SDS discovers enjoy excellent stability.
Resumo:
Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.
Resumo:
In this paper, an improved stochastic discrimination (SD) is introduced to reduce the error rate of the standard SD in the context of multi-class classification problem. The learning procedure of the improved SD consists of two stages. In the first stage, a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. In the second stage, the standard SD is modified by (i) restricting sampling in the important space; and (ii) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but smaller variance than that of standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples axe provided to demonstrate the effectiveness of the proposed improved SD.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.