961 resultados para Steady state migration test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a multilevel dodecagonal voltage space vector structure with nineteen concentric dodecagons is proposed for the first time. This space vector structure is achieved by cascading two sets of asymmetric three-level inverters with isolated H-bridges on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of dc link voltages and switching states of the inverters. The proposed scheme retains all the advantages of multilevel topologies as well as the advantages of dodecagonal voltage space vector structure. In addition to that, a generic and simple method for calculation of pulsewidth modulation timings using only sampled reference values (v(alpha) and v(beta)) is proposed. This enables the scheme to be used for any closed-loop application such as vector control. In addition, a new method of switching technique is proposed, which ensures minimum switching while eliminating the fifth-and seventh-order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped wave-form for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady-state operation, transient operation, including start-up have been presented and the results of fast Fourier transform analysis is also presented for validating the proposed concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations,are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Cluysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWL A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AIM, virus interaction with mobile and immobile colloids, virus attachment to solid-water interface (SWI), and colloid interaction with SWI and AWL The virus BTC is relatively insensitive to parameters describing the maximum adsorption capacity of the AWI for colloids, inlet colloid concentration, virus detachment rate coefficient from the SW!, maximum adsorption capacity of the AWI for viruses and inlet virus concentration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beneficial effects of carbon grafting into the iron active material for rechargeable alkaline-iron-electrodes with and without Bi2S3 additive is probed by in situ X-ray diffraction in conjunction with Extended X-ray Absorption Fine Structure (EXAFS) and electrochemistry. EXAFS data unravel that the composition of pristine active material (PAM) for iron electrodes comprises 87% of magnetite and 13% of alpha-iron while carbon-grafted active material comprises 60% of magnetite and 40% of alpha-iron. In situ XRD patterns are recorded using a specially designed electrochemical cell. XRD data reflect that magnetite present in PAM iron electrode, without bismuth sulfide additive, is not reduced during charging while PAM iron electrode with bismuth sulfide additive is partially reduced to alpha-Fe/Fe(OH)(2). Interestingly, carbon-grafted-iron electrodes with bismuth sulfide exhibit complete conversion of active material to alpha-Fe/Fe(OH)2. The ameliorating effect of carbon grafting is substantiated by kinetic parameters obtained from steady-state potentiostatic polarization and Tafel plots. The mechanism for iron-electrode charge - discharge reactions are discussed in the light of the potential - pH diagrams for Fe - H2O, S - H2O and FeSads - H2O systems and it is surmised that carbon grafting into iron active material promotes its electrochemical utilization. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation of evaporation of a pentane meniscus from a heated capillary slot is presented. A novel aspect of this study is that both the wicking height and steady state evaporation mass flow rate are measured simultaneously. Based on a macroscopic force balance, the apparent contact angle of the evaporating meniscus is experimentally estimated from the wicking height and mass flow rate. This is compared with the results obtained using evaporating thin-film theory. The experimentally estimated contact angle is slightly larger than that obtained from the thin-film model but both show similar trends. Further, it is found that the reduction in the meniscus height is primarily due to an increase in the apparent contact angle. The liquid and vapor pressure drops in the capillary are insignificant relative to the capillary pressure. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates light-load instability in a 100-kW open-loop induction motor drive on account of inverter deadtime. An improved small-signal model of an inverter-fed induction motor is proposed. This improved model is derived by linearizing the nonlinear dynamic equations of the motor, which include the inverter deadtime effect. Stability analysis is carried out on the 100-kW415-V three-phase induction motor considering no load. The analysis brings out the region of instability of this motor drive on the voltage versus frequency (V-f) plane. This region of light-load instability is found to expand with increase in inverter deadtime. Subharmonic oscillations of significant amplitude are observed in the steady-state simulated and measured current waveforms, at numerous operating points in the unstable region predicted, confirming the validity of the stability analysis. Furthermore, simulation and experimental results demonstrate that the proposed model is more accurate than an existing small-signal model in predicting the region of instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector (SV) structures have advantages like extension of linear modulation range, elimination of fifth and seventh harmonics in phase voltages and currents for the full modulation range including extreme 12-step operation, reduced device voltage ratings, lesser dv/dt stresses on devices and motor phase windings resulting in lower EMI/EMC problems, and lower switching frequency-making it more suitable for high-power drive applications. This paper proposes a simple method to obtain pulsewidth modulation (PWM) timings for a dodecagonal voltage SV structure using only sampled reference voltages. In addition to this, a carrier-based method for obtaining the PWM timings for a general N-level dodecagonal structure is proposed in this paper for the first time. The algorithm outputs the triangle information and the PWM timing values which can be set as the compare values for any carrier-based hardware PWM module to obtain SV PWM like switching sequences. The proposed method eliminates the need for angle estimation, computation of modulation indices, and iterative search algorithms that are typical in multilevel dodecagonal SV systems. The proposed PWM scheme was implemented on a five-level dodecagonal SV structure. Exhaustive simulation and experimental results for steady-state and transient conditions are presented to validate the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to study the influence of inverter dead-time on steady as well as dynamic operation of an open-loop induction motor drive fed from a voltage source inverter (VSI). Towards this goal, this paper presents a systematic derivation of a dynamic model for an inverter-fed induction motor, incorporating the effect of inverter dead-time, in the synchronously revolving dq reference frame. Simulation results based on this dynamic model bring out the impact of inverter dead-time on both the transient response and steady-state operation of the motor drive. For the purpose of steady-state analysis, the dynamic model of the motor drive is used to derive a steady-state model, which is found to be non-linear. The steady-state model shows that the impact of dead-time can be seen as an additional resistance in the stator circuit, whose value depends on the stator current. Towards precise evaluation of this dead-time equivalent resistance, an analytical expression is proposed for the same in terms of inverter dead-time, switching frequency, modulation index and load impedance. The notion of dead-time equivalent resistance is shown to simplify the solution of the non-linear steady-state model. The analytically evaluated steady-state solutions are validated through numerical simulations and experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quasi-steady state growth and dissolution in a 2-D rectangular enclosure is numerically investigated. This paper is an extension to indicate the effects of the orientation of gravity on the concentration field in crystallization from solution under microgravity, especially on the lateral non-uniformity of concentration distribution at the growth surface. The thermal and solute convection are included in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734, Scripta Metall. Mater. 31 (1994) 1037; Interface Sci. 3(1996) 169].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potentiometric device based on interfacing a solid electrolyte oxygen ion conductor with a thin platinum film acts as a robust, reproducible sensor for the detection of hydrocarbons in high- or ultrahigh-vacuum environments. Sensitivities in the order of approximately 5 x 10(-10) mbar are achievable under open circuit conditions, with good selectivity for discrimination between n-butane on one hand and toluene, n-octane, n-hexane, and 1-butene on the other hand. The sensor's sensitivity may be tuned by operating under constant current (closed circuit) conditions; injection of anodic current is also a very effective means of restoring a clean sensing surface at any desired point. XPS data and potentiometric measurements confirm the proposed mode of sensing action: the steady-state coverage of Oa, which sets the potential of the Pt sensing electrode, is determined by the partial pressure and dissociative sticking probability of the impinging hydrocarbon. The principles established here provide the basis for a viable, inherently flexible, and promising means for the sensitive and selective detection of hydrocarbons under demanding conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vibration analysis of an adhered S-shaped microbeam under alternating sinusoidal voltage is presented. The shaking force is the electrical force due to the sinusoidal voltage. During vibration, both the microbeam deflection and the adhesion length keep changing. The microbeam deflection and adhesion length are numerically determined by the iteration method. As the adhesion length keeps changing, the domain of the equation of motion for the microbeam (unadhered part) changes correspondingly, which results in changes of the structure natural frequencies. For this reason, the system can never reach a steady state. The transient behaviors of the microbeam under different shaking frequencies are compared. We deliberately choose the initial conditions to compare our dynamic results with the existing static theory. The paper also analyzes the changing behavior of adhesion length during vibration and an asymmetric pattern of adhesion length change is revealed, which may be used to guide the dynamic de-adhering process. The abnormal behavior of the adhered microbeam vibrating at almost the same frequency under two quite different shaking frequencies is also shown. The Galerkin method is used to discretize the equation of motion and its convergence study is also presented. The model is only applicable in the case that the peel number is equal to 1. Some other model limitations are also discussed.