991 resultados para Starter, Jan Janszoon, 1594-1626.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abundance variations of six Pliocene species of discoasters have been analyzed over the time interval from 1.89 to 2.95 Ma at five contrasting sites in the North Atlantic: Deep Sea Drilling Project Sites 552 (56°N) and 607 (41°N) and Ocean Drilling Program 658 (20°N), 659 (18°N), and 662 (1°S). A sampling interval equivalent to approximately 3 k.y. was used. Total Discoaster abundance showed a reduction with increasing latitude and from the effects of upwelling. This phenomenon is most obvious in Discoaster brouweri, the only species that survived over the entire time interval studied. Prior to 2.38 Ma, Discoaster pentaradiatus and Discoaster surculus are important components of the Discoaster assemblage: Discoaster pentaradiatus increases slightly with latitude up to 41°N, and its abundance relative to D. brouweri increases up to 56°N; D. surculus increases in abundance with latitude and with upwelling conditions relative to both D. brouweri and D. pentaradiatus and is dominant to the latter species at upwelling Site 658 and at the highest latitude sites. Discoaster asymmetricus and Discoaster tamalis appear to increase in abundance with latitude relative to D. brouweri. Many of the abundance changes observed appear to be connected with the initiation of glaciation in the North Atlantic at 2.4 Ma. The long-term trend of decreasing Discoaster abundance probably reflects the fall of sea-surface temperatures. This trend of cooling is overprinted by short-term variations that are probably associated with orbital forcing. Evidence for the astronomical elements of eccentricity and obliquity periodicities were found at all sites; however, only at Sites 607, 659, and 662 were precessional periodicities detected. Furthermore, only at Site 659 was precession found to be dominant to obliquity. Abundance peaks of individual species were found to cross-correlate between sites. The distinct abundance fluctuations observed especially in the tropics suggest that temperature is not the only factor responsible for this variation. This study reveals for the first time the importance of productivity pressure on the suppression of Discoaster abundance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About one third of the anthropogenic carbon dioxide (CO2) released into the atmosphere in the past two centuries has been taken up by the ocean. As CO2 invades the surface ocean, carbonate ion concentrations and pH are lowered. Laboratory studies indicate that this reduces the calcification rates of marine calcifying organisms, including planktic foraminifera. Such a reduction in calcification resulting from anthropogenic CO2 emissions has not been observed, or quantified in the field yet. Here we present the findings of a study in the Western Arabian Sea that uses shells of the surface water dwelling planktic foraminifer Globigerinoides ruber in order to test the hypothesis that anthropogenically induced acidification has reduced shell calcification of this species. We found that light, thin-walled shells from the surface sediment are younger (based on 14C and d13C measurements) than the heavier, thicker-walled shells. Shells in the upper, bioturbated, sediment layer were significantly lighter compared to shells found below this layer. These observations are consistent with a scenario where anthropogenically induced ocean acidification reduced the rate at which foraminifera calcify, resulting in lighter shells. On the other hand, we show that seasonal upwelling in the area also influences their calcification and the stable isotope (d13C and d18O) signatures recorded by the foraminifera shells. Plankton tow and sediment trap data show that lighter shells were produced during upwelling and heavier ones during non-upwelling periods. Seasonality alone, however, cannot explain the 14C results, or the increase in shell weight below the bioturbated sediment layer. We therefore must conclude that probably both the processes of acidification and seasonal upwelling are responsible for the presence of light shells in the top of the sediment and the age difference between thick and thin specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acceleration of Greenland's three largest outlet glaciers, Helheim, Kangerdlugssuaq and Jakobshavn Isbræ, accounted for a substantial portion of the ice sheet's mass loss over the past decade. Rapid changes in their discharge, however, make their cumulative mass-change uncertain. We derive monthly mass balance rates and cumulative balance from discharge and surface mass balance (SMB) rates for these glaciers from 2000 through 2010. Despite the dramatic changes observed at Helheim, the glacier gained mass over the period, due primarily to the short duration of acceleration and a likely longer-term positive balance. In contrast, Jakobshavn Isbræ lost an equivalent of over 11 times the average annual SMB and loss continues to accelerate. Kangerdlugssuaq lost over 7 times its annual average SMB, but loss has returned to the 2000 rate. These differences point to contrasts in the long-term evolution of these glaciers and the danger in basing predictions on extrapolations of recent changes.