932 resultados para Spheroids, Cellular
Resumo:
Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in a persistent impairment of proliferation when the cells are subcultured at low density and a greatly increased probability of neoplastic transformation in assays for transformation. These properties, along with the large accumulation of age pigment bodies in the confluent cells, are cardinal cellular characteristics of aging in organisms and validate the system as a model of cellular aging. Two cultures labeled alpha and beta were obtained after prolonged confluence; both were dominated by cells that were both slowed in growth at low population density and enhanced in growth capacity at high density, a marker of neoplastic transformation. An experiment was designed to study the reversibility of these age-related properties by serial subculture at low density of the two uncloned cultures and their progeny clones derived from assuredly single cells. Both uncloned cultures had many transformed cells and a reduced growth rate on subculture. Serial subculture resulted in a gradual increase in growth rates of both populations, but a reversal of transformation only in the alpha population. The clones originating from both populations varied in the degree of growth impairment and neoplastic transformation. None of the alpha clones increased in growth rate on low density passage nor did the transformed clones among them revert to normal growth behavior. The fastest growing beta clone was originally slower than the control clone, but caught up to it after four weekly subcultures. The other beta clones retained their reduced growth rates. Four of the five beta clones, including the fastest grower, were transformed, and none reverted on subculture. We conclude that the apparent reversal of impaired growth and transformation in the uncloned parental alpha population resulted from the selective growth at low density of fast growing nontransformed clones. The reversal of impaired growth in the uncloned parental beta population was also the result of selective growth of fast growing clones, but in this case they were highly transformed so no apparent reversal of transformation occurred. The clonal results indicate that neither the impaired growth nor the neoplastic transformation found in aging cells is reversible. We discuss the possible contribution of epigenetic and genetic processes to these irreversible changes.
Resumo:
The exact role of the pfmdr1 gene in the emergence of drug resistance in the malarial parasite Plasmodium falciparum remains controversial. pfmdr1 is a member of the ATP binding cassette (ABC) superfamily of transporters that includes the mammalian P-glycoprotein family. We have introduced wild-type and mutant variants of the pfmdr1 gene in the yeast Saccharomyces cerevisiae and have analyzed the effect of pfmdr1 expression on cellular resistance to quinoline-containing antimalarial drugs. Yeast transformants expressing either wild-type or a mutant variant of mouse P-glycoprotein were also analyzed. Dose-response studies showed that expression of wild-type pfmdr1 causes cellular resistance to quinine, quinacrine, mefloquine, and halofantrine in yeast cells. Using quinacrine as substrate, we observed that increased resistance to this drug in pfmdr1 transformants was associated with decreased cellular accumulation and a concomitant increase in drug release from preloaded cells. The introduction of amino acid polymorphisms in TM11 of Pgh-1 (pfmdr1 product) associated with drug resistance in certain field isolates of P. falciparum abolished the capacity of this protein to confer drug resistance. Thus, these findings suggest that Pgh-1 may act as a drug transporter in a manner similar to mammalian P-glycoprotein and that sequence variants associated with drug-resistance pfmdr1 alleles behave as loss of function mutations.
Resumo:
Apoptosis induced by wild-type p53 or cytotoxic compounds in myeloid leukemic cells can be inhibited by the cytokines interleukin 6, interleukin 3, granulocyte-macrophage colony-stimulating factor, and interferon gamma and by antioxidants. The antioxidants and cytokines showed a cooperative protective effect against induction of apoptosis. Cells with a higher intrinsic level of peroxide production showed a higher sensitivity to induction of apoptosis and required a higher cytokine concentration to inhibit apoptosis. Decreasing the intrinsic oxidative stress in cells by antioxidants thus inhibited apoptosis, whereas increasing this intrinsic stress by adding H2O2 enhanced apoptosis. Induction of apoptosis by wild-type p53 was not preceded by increased peroxide production or lipid peroxidation and the protective effect of cytokines was not associated with a decrease in these properties. The results indicate that the intrinsic degree of oxidative stress can regulate cell susceptibility to wild-type p53-dependent and p53-independent induction of apoptosis and the ability of cytokines to protect cells against apoptosis.
Resumo:
Cell adhesion has a fundamental role in the proliferation and motility of normal cells and the metastasis of tumor cells. To identify signaling pathways activated by the adherence of tumor cells, we analyzed the tyrosine phosphorylation of proteins in mouse melanoma cells before and after attachment to substrata. We discovered that cellular adherence activated the protein-tyrosine kinase of the cell surface receptor Met, whose ligand is hepatocyte growth factor and scatter factor. The activation was exceedingly prompt, affected the great majority of Met in the cells, persisted so long as the cells remained adherent, and was rapidly reversed as soon as the cells were detached from substrata. Activation of Met required that cells be adherent but not that they spread on the substratum, and it occurred in the absence of any apparent ligand for the receptor. Ligand-independent activation of Met occurred in several varieties of tumor cells but not in normal endothelial cells that express the receptor. The activation of Met described here may represent a means by which cells respond to mechanical as opposed to biochemical stimuli.
Resumo:
The three-dimensional structures of human parvovirus B19 VP2 capsids, alone and complexed with its cellular receptor, globoside, have been determined to 26 resolution. The B19 capsid structure, reconstructed from cryo-electron micrographs of vitrified specimens, has depressions on the icosahedral 2-fold and 3-fold axes, as well as a canyon-like region around the 5-fold axes. Similar results had previously been found in an 8 angstrom resolution map derived from x-ray diffraction data. Other parvoviral structures have a cylindrical channel along the 5-fold icosahedral axes, whereas density covers the 5-fold axes in B19. The glycolipid receptor molecules bind into the depressions on the 3-fold axes of the B19:globoside complex. A model of the tetrasaccharide component of globoside, organized as a trimeric fiber, fits well into the difference density representing the globoside receptor. Escape mutations to neutralizing antibodies map onto th capsid surface at regions immediately surrounding the globoside attachment sites. The proximity of the antigenic epitopes to the receptor site suggests that neutralization of virus infectivity is caused by preventing attachment of viruses to cells.
Resumo:
The replication of double-stranded plasmids containing a single adduct was analyzed in vivo by means of a sequence heterology that marks the two DNA strands. The single adduct was located within the sequence heterology, making it possible to distinguish trans-lesion synthesis (TLS) events from damage avoidance events in which replication did not proceed through the lesion. When the SOS system of the host bacteria is not induced, the C8-guanine adduct formed by the carcinogen N-2-acetylaminofluorene (AAF) yields less than 1% of TLS events, showing that replication does not readily proceed through the lesion. In contrast, the deacetylated adduct N-(deoxyguanosin-8-yl)-2-aminofluorene yields approximately 70% of TLS events under both SOS-induced and uninduced conditions. These results for TLS in vivo are in good agreement with the observation that AAF blocks DNA replication in vitro, whereas aminofluorene does so only weakly. Induction of the SOS response causes an increase in TLS events through the AAF adduct (approximately 13%). The increase in TLS is accompanied by a proportional increase in the frequency of AAF-induced frameshift mutations. However, the polymerase frameshift error rate per TLS event was essentially constant throughout the SOS response. In an SOS-induced delta umuD/C strain, both US events and mutagenesis are totally abolished even though there is no decrease in plasmid survival. Error-free replication evidently proceeds efficiently by means of the damage avoidance pathway. We conclude that SOS mutagenesis results from increased TLS rather than from an increased frameshift error rate of the polymerase.
Resumo:
Antibody-based therapies for cancer rely on the expression of defined antigens on neoplastic cells. However, most tumors display heterogeneity in the expression of such antigens. We demonstrate here that antibody-targeted interleukin 2 delivery overcomes this problem by induction of a host immune response. Immunohistochemical analysis demonstrated that the antibody-interleukin 2 fusion protein-induced eradication of established tumors is mediated by host immune cells, particularly CD8+ T cells. Because of this cellular immune response, antibody-directed interleukin 2 therapy is capable to address established metastases displaying substantial heterogeneity in expression of the targeted antigen. This effector mechanism further enables the induction of partial regressions of large subcutaneous tumors that exceeded more than 5% of the body weight. These observations indicate that antibody-directed cytokine delivery offers an effective new tool for cancer therapy.
Resumo:
Upon stimulation with anti-CD3, suppressor T-cell (Ts) hybridomas and homologous transfectants of T-cell receptor a (TCRalpha) cDNA in the T-cell hybridoma formed a 55-kDa TCRalpha chain derivative that bound both the monoclonal anti-TCRalpha chain and polyclonal antibodies against glycosylation inhibiting factor (GIF). The peptide is a subunit of antigen-specific suppressor T-cell factor (TsF), and is considered to be a posttranslationally-formed conjugate of TCRalpha chain with GIF peptide. The TCRalpha derivative is synthesized by the transfectant after stimulation with anti-CD3, and not derived from TCR present on the cell surface. Stimulation of the stable homologous transfectants with anti-CD3 induced translocation of the 13-kDa GIF peptide into endoplasmic reticulum (ER). When a helper Ts hybridoma or a stable transfectant of the same TCRalpha cDNA in a helper cell-derived TCRalpha- clone was stimulated with anti-CD3, translocation of GIF peptide was not detected, and these cells failed to secrete a TCRalpha derivative. However, further transfection of a chimeric cDNA encoding a procalcitonin-GIF fusion protein into the helper cell-derived stable transfectant of TCRalpha cDNA resulted in translocation of the GIF protein and formation of bioactive 55-kDa GIF. The results indicated that translocation of GIF peptide through ER is unique for Ts cells, and that this process is essential for the formation/secretion of the soluble form derivative of TCRalpha chain by T cells.
Resumo:
Besides synthesizing nitric oxide (NO), purified neuronal NO synthase (nNOS) can produce superoxide (.O2-) at lower L-Arg concentrations. By using electron paramagnetic resonance spin-trapping techniques, we monitored NO and .O2- formation in nNOS-transfected human kidney 293 cells. In control transfected cells, the Ca2+ ionophore A23187 triggered NO generation but no .O2- was seen. With cells in L-Arg-free medium, we observed .O2- formation that increased as the cytosolic L-Arg levels decreased, while NO generation declined. .O2- formation was virtually abolished by the specific NOS blocker, N-nitro-L-arginine methyl ester (L-NAME). Nitrotyrosine, a specific nitration product of peroxynitrite, accumulated in L-Arg-depleted cells but not in control cells. Activation by A23187 was cytotoxic to L-Arg-depleted, but not to control cells, with marked lactate dehydrogenase release. The cytotoxicity was largely prevented by either superoxide dismutase or L-NAME. Thus, with reduced L-Arg availability NOS elicits cytotoxicity by generating .O2- and NO that interact to form the potent oxidant peroxynitrite. Regulating arginine levels may provide a therapeutic approach to disorders involving .O2-/NO-mediated cellular injury.
Resumo:
The renal urea transporter (RUT) is responsible for urea accumulation in the renal medulla, and consequently plays a central role in the urinary concentrating mechanism. To study its cellular and subcellular localization, we prepared affinity-purified, peptide-derived polyclonal antibodies against rat RUT based on the cloned cDNA sequence. Immunoblots using membrane fractions from rat renal inner medulla revealed a solitary 97-kDa band. Immunocytochemistry demonstrated RUT labeling of the apical and subapical regions of inner medullary collecting duct (IMCD) cells, with no labeling of outer medullary or cortical collecting ducts. Immunoelectron microscopy directly demonstrated labeling of the apical plasma membrane and of subapical intracellular vesicles of IMCD cells, but no labeling of the basolateral plasma membrane. Immunoblots demonstrated RUT labeling in both plasma membrane and intracellular vesicle-enriched membrane fractions from inner medulla, a subcellular distribution similar to that of the vasopressin-regulated water channel, aquaporin-2. In the outer medulla, RUT labeling was seen in terminal portions of short-loop descending thin limbs. Aside from IMCD and descending thin limbs, no other structures were labeled in the kidney. These results suggest that: (i) the RUT provides the apical pathway for rapid, vasopressin-regulated urea transport in the IMCD, (ii) collecting duct urea transport may be increased by vasopressin by stimulation of trafficking of RUT-containing vesicles to the apical plasma membrane, and (iii) the rat urea transporter may provide a pathway for urea entry into the descending limbs of short-loop nephrons.
Resumo:
Many stress proteins and their cognates function as molecular chaperones or as components of proteolytic systems. Viral infection can stimulate synthesis of stress proteins and particular associations of viral and stress proteins have been documented. However, demonstrations of functions for stress proteins in viral life cycles are few. We have initiated an investigation of the roles of stress proteins in eukaryotic viral life cycles using as a model the Ty3 retrovirus-like element of Saccharomyces cerevisiae. During stress, Ty3 transposition is inhibited; Ty3 DNA is not synthesized and, although precursor proteins are detected, mature Ty3 proteins and virus-like particles (VLPs) do not accumulate. The same phenotype is observed in the constitutively stressed ssa1 ssa2 mutant, which lacks two cytoplasmic members of the hsp70 family of chaperones. Ty3 VLPs preformed under nonstress conditions are degraded more rapidly if cells are shifted from 30 degrees C to 37 degrees C. These results suggest that Ty3 VLPs are destroyed by cellular stress proteins. Elevated expression of the yeast UBP3 gene, which encodes a protease that removes ubiquitin from proteins, allows mature Ty3 proteins and VLPs to accumulate in the ssa1 ssa2 mutant, suggesting that, at least under stress conditions, ubiquitination plays a role in regulating Ty3 transposition.
Resumo:
We have found a predator-prey association between the social amoeba Dictyostelium discoideum and the free soil living nematode Caenorhabditis elegans. C. elegans feeds on the amoebae and multiplies indefinitely when amoebae are the sole food source. In an environment created from soil, D. discoideum grows and develops, but not in the presence of C. elegans. During development, C. elegans feeds on amoebae until they aggregate and synthesize an extracellular matrix called the slime sheath. After the sheath forms, the aggregate and slug are protected. Adult nematodes ingest Dictyostelium spores, which pass through the gut of the worm without loss of structure and remain viable. Nematodes kill the amoebae but disperse the spores. The sheath that is constructed when the social amoebae aggregate and the spore coats of the individual cells may protect against this predator. Individual amoebae may also protect themselves by secreting compounds that repel nematodes.
Resumo:
Myxococcus xanthus is a Gram-negative bacterium that aggregates to form fruiting bodies when nutrients are limiting. Previous studies showed that the frz mutants that are defective in chemotaxis exhibited irregular and infrequent patterns of cellular reversal. In contrast, wild-type cells, when examined individually, reverse relatively frequently, about once every 6 min. It is not known how the change of reversal frequency effects cellular aggregation during fruiting body formation in M. xanthus. In this study, we stained cells with a tetrazolium dye so that we could track the reversal frequencies of single cells and cells in groups. We found that developmental cells in large groups reverse much less than cells in small groups or as single cells. This reduced cellular reversal frequency is related to the frz signal transduction system and correlated with the methylation of FrzCD (a methyl-accepting chemotaxis protein). Cells containing a mutation in the frz genes or in the genes required for social motility do not respond in this way. The reduction in cellular reversals as developmental cells accumulate in groups suggests a simple hypothesis for the aggregation of cells into discrete mounds during fruiting body formation. We also found that M. xanthus cells glide with equal frequency in the forward or reverse directions, indicating that cells do not contain a "head" or "tail."
Resumo:
The Rev protein of HIV-1 is essential for the nuclear export of incompletely spliced viral mRNAs. This action depends on the mutationally defined Rev activation domain, which both binds the nucleoporin-like human cellular cofactor Rab/hRIP and also functions as a nuclear export signal. Protein kinase inhibitor alpha (PKI) also contains a potent nuclear export signal. However, PKI plays no role in nuclear RNA export and instead induces the nuclear export of a specific protein target, the catalytic subunit of cAMP-dependent protein kinase. Here, it is demonstrated that the nuclear export signal of PKI not only binds the Rab/hRIP cofactor specifically but also can effectively substitute for the Rev activation domain in mediating the nuclear export of HIV-1 mRNAs. We conclude that HIV-1 Rev and PKI act through an identical nuclear export pathway and that Rev, rather than using a dedicated RNA export pathway, is instead acting as an adaptor that allows viral mRNAs to access a cellular protein export pathway.
Resumo:
Development of antisense technology has focused in part on creating improved methods for delivering oligodeoxynucleotides (ODNs) to cells. In this report, we describe a cationic lipid that, when formulated with the fusogenic lipid dioleoylphosphatidyliethanolamine, greatly improves the cellular uptake properties of antisense ODNs, as well as plasmid DNA. This lipid formulation, termed GS 2888 cytofectin, (i) efficiently transfects ODNs and plasmids into many cell types in the presence or absence of 10% serum in the medium, (ii) uses a 4- to 10-fold lower concentration of the agent as compared to the commercially available Lipofectin liposome, and (iii) is > or = 20-fold more effective at eliciting antisense effects in the presence of serum when compared to Lipofectin. Here we show antisense effects using GS 2888 cytofectin together with C-5 propynyl pyrimidine phosphorothioate ODNs in which we achieve inhibition of gene expression using low nanomolar concentrations of ODN. This agent expands the utility of antisense ODNs for their use in understanding gene function and offers the potential for its use in DNA delivery applications in vivo.