974 resultados para Spectroscopic
Resumo:
SnO2 ceramics doped with different amounts of Co, Cr or Nb were investigated using visible and infrared spectroscopy at room temperature. Based on the observed d-d transitions the valence states of incorporated dopants were determined. Values of the optical band-gap were calculated in all samples. The infrared spectra of the samples displayed variations in the position, relative intensity and width of the bands, which were attributed to the presence of dopants.
Resumo:
The reactions of the precursor [Pd(N,C-dmba)(MeCN)2](NO 3) (1) (dmba = N,N-dimethylbenzylamine), with the proligands 3,5-dimethylpyrazole (Hdmpz), 2-quinolinethiol (qnSH) and 1,1′- bis(diphenylphosphine)ferrocene (dppf) afforded the compounds [Pd(N,C-dmba)(Hdmpz)(ONO2)]0.5CH2Cl2 (2), [Pd(N,C-dmba)(qnSH)(ONO2)] 0.5CH2Cl2 (3) and [Pd(N,C-dmba)(dppf)](NO3) (4), respectively. The mononuclear species 2,3 and 4 were characterized by elemental analysis, infrared spectroscopy, NMR and thermogravimetric analysis. The IR spectra show bands which are consistent with terminal monodentate nitrate group for 2-3 and ionic nitrate for 4. The 1H and 13C NMR data confirm that coordination of the organic ligands has occurred and the 31P{1H} NMR data for 4 clearly evidences the occurrence in solution of three cyclopalladated species with the dppf acting as a bridging ligand in two cases and as a chelate in one. The thermal behavior of compounds 1-4 suggests that complex 2 is the most stable. The X-ray diffractometry results show the formation of PdO from 1 and 2, Pd2OSO4 from 3, and of a mixture of PdO and Fe 2(PO4)3 from 4, as final decomposition products.
Resumo:
Optical absorption and fluorescence were investigated in Tm3+ doped fluoroindate glass. The spectroscopic parameters for transitions in the 4f11 configuration were determined. The fluorescence study revealed the origin of the frequency upconversion process as well as allowed to quantify the interaction between Tm3+ ions.
Resumo:
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO) 2]SO4 · H2O and [Cu(metSO)2] · H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.
Resumo:
Spectroscopic properties of ytterbium-doped tellurile glasses with different compositions are reported. Results of linear refractive index, absorption and emission spectra, and fluorescence lifetimes are presented. The studied samples present high refractive index (∼2.0) and large transmission window (380-6000nm). Absorption and emission cross-sections are calculated as well as the minimum pump laser intensity. The results are compared with the values of other laser materials, in order to investigate applications as laser media in the infrared region.
Resumo:
Solid-state LnL3·1.25H2O compounds, where L is oxamate and Ln is light trivalent lanthanides, have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis, complexometry, and X-ray powder diffractometry were used to characterize and to study the thermal behavior of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, and gaseous products evolved during the thermal decomposition of these compounds in dynamic air atmosphere. The dehydration occurs in a single step and through a slow process. The thermal decomposition of the anhydrous compounds occur in a single (Ce), two (Pr), and three (La, Nd to Gd) steps with the formation of the respective oxides, CeO2, Pr 6O11, and Ln2O3 (Ln = La, Nd to Gd). The theoretical and experimental spectroscopic study suggests that the carboxylate group and amide carbonyl group of oxamate are coordinate to the metals in a bidentate chelating mode. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic- sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H 2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Characterization by micro-Raman spectroscopy of polymeric materials used as nuclear track detectors reveals physico-chemical and morphological information on the material's molecular structure. In this work, the nuclear track detector poly(allyl diglycol carbonate), or Columbia Resin 39 (CR-39), was characterized according to the fluence of alpha particles produced by a 226Ra source and chemical etching time. Therefore, damage of the CR-39 chemical structure due to the alpha-particle interaction with the detector was analyzed at the molecular level. It was observed that the ionization and molecular excitation of the CR-39 after the irradiation process entail cleavage of chemical bonds and formation of latent track. In addition, after the chemical etching, there is also loss of polymer structure, leading to the decrease of the group density C-O-C (∼888 cm-1), CH=CH (∼960 cm -1), C-O (∼1110 cm-1), C-O-C (∼1240 cm -1), C-O (∼1290 cm-1), C-O (∼1741 cm -1), -CH2- (∼2910 cm-1), and the main band -CH2- (∼2950 cm-1). The analyses performed after irradiation and chemical etching led to a better understanding of the CR-39 molecular structure and better comprehension of the process of the formation of the track, which is related to chemical etching kinetics. Copyright © 2013 Society for Applied Spectroscopy.
Resumo:
Solid-state compounds of yttrium and lanthanide chelates of ethylenediaminetetraacetic acid have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), theoretical and experimental infrared spectroscopy (FTIR), elemental analysis, complexometry and TG-DSC coupled to FTIR were used to characterize and to study the thermal decomposition of these compounds. The results provided information about the composition, dehydration, thermal stability, thermal decomposition and identification of gaseous products evolved during the thermal decomposition of these compounds. The theoretical and experimental spectroscopic data suggest the possible modes of coordination of the ligand with the lanthanum and terbium metal ions. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Thermal and spectroscopic studies on solid trivalent lanthanides and yttrium(III) α-hydroxyisobutyrates, Ln(C4H7O 3)3·nH2O were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), elemental analysis, X-ray diffractometry, complexometry, experimental and theoretical infrared spectroscopy and TG-DSC coupled to FTIR. The dehydration of lanthanum to neodymium and terbium to thulium and yttrium compounds occurs in a single step while for samarium, europium and gadolinium ones it occurs in three consecutives steps. Ytterbium and lutetium compounds were obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occursin two consecutives steps, except lanthanum (five steps) and cerium (single step), with formation of the respective oxides CeO2, Pr6O 11, Tb4O7 and Ln2O3 (Ln = La, Nd to Lu and Y), as final residue. The resultsalso provided information concerning the composition, thermal behavior, crystallinity and gaseous products evolved during the thermal decomposition. The theoretical and experimental spectroscopic data suggested the possible modes of coordination of the ligand with the lanthanides.© 2013 Elsevier B.V.
Resumo:
A polymeric complex [Eu(α-tpc)3(α-Htpc) 2]n and its characterization by single crystal X-ray and thermal analysis, infrared and photoluminescence spectroscopies are described. The compound crystallizes in the monoclinic Cc space group. The asymmetric unit is formed from a europium ion bonded to one carboxyl oxygen of five different thiophene carboxylic moieties. Three of these moieties are deprotonated and bridge between neighboring europium ions giving rise to an infinite polymer along the c axis. Besides the europium characteristic emission lines, the emission spectra show unambiguously the crystal size effect on the 5D0 → 7F0 transition. The complex thermal decomposition at 220 C leads to a stable luminescent complex in which the 5D0 → 7F4 transition reveals a monomeric characteristic. The Judd-Ofelt intensity parameters to the polymeric and the monomeric compound with the same ligand and coordination number were compared. © 2013 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)