987 resultados para Spectrophotometry
Resumo:
Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.
Resumo:
Studies of the late Miocene-early Pliocene biogenic bloom typically have focused on high-productivity areas in the Indian and Pacific Oceans in order to achieve high resolution samples. Thus there is a paucity of information concerning whether the Atlantic Ocean, in general or low-productivity regions in all three basins experienced this bloom. This study measured the phosphorus mass accumulation rate (PMAR). in five cores from low-productivity regions of the Atlantic and Indian Oceans. All cores exhibit a peak in productivity 4-5.5 Ma, coincident with the Indo-Pacific bloom. This suggests that nutrients were not shifted away from low-productivity regions nor out of the Atlantic Ocean. Instead, it appears that the bloom was caused by an overall increase in nutrient flux into the world oceans. Four of the cores record the bloom's PMAR peak as bimodal, indicating a pulsed increase in phosphorus to the oceans. This suggests that there may have been multiple causes of the biogenic bloom.
Resumo:
The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV : FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen production declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification.