948 resultados para Speckle tracking liver motion correction contrast-enhanced ultrasound
Resumo:
Proteases as well as alterations in intracellular calcium have important roles in hepatic preservation-reperfusion injury, and increased calpain activity recently has been demonstrated in liver allografts. Experiments were designed to evaluate (i) hepatic cytosolic calpain activity during different periods of cold ischemia (CI), rewarming, or reperfusion, and (ii) effects of inhibition of calpain on liver graft function using the isolated perfused rat liver and arterialized orthotopic liver transplantation models. Calpain activity was assayed using the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-7-amino-4-methyl coumarin (AMC) and expressed as mean ± SD pmol AMC released/min per mg of cytosolic protein. Calpain activity rose significantly after 24 hr of CI in University of Wisconsin solution and further increased with longer preservation. Activity also increased within 30 min of rewarming, peaking at 120 min. Increased durations of CI preceding rewarming resulted in significantly higher activity (P < 0.01). Calpain activity increased rapidly upon reperfusion and was significantly enhanced by previous CI (P < 0.01). Calpain inhibition with Cbz-Val-Phe methyl ester significantly decreased aspartate aminotransferase released in the isolated perfused rat liver perfusate (P < 0.05). Duration of survival after orthotopic liver transplantation using livers cold-preserved for 40 hr was also significantly increased (P < 0.05) with calpain inhibitor. In conclusion, calpain proteases are activated during each phase of transplantation and are likely to play an important role in the mechanisms of preservation-reperfusion injury.
Resumo:
Two isoforms of the substance P (SP) receptor, differing in the length of the cytoplasmic carboxyl-terminus by ≈8 kDa, have been detected previously in rat salivary glands and other tissues. The binding and functional properties of these two isoforms have been investigated using full-length (407 amino acids) and carboxyl-terminally truncated (324 amino acids) rat SP receptors transfected stably into Chinese hamster ovary cells. Both the full-length and the truncated receptor bound radiolabeled SP with a similar Kd (≈0.1 nM). The average number of high affinity SP binding sites per cell was 1.0 × 105 and 0.3 × 105 for the full-length and the truncated SP receptor, respectively. In both cell lines, SP induced a rapid but transient increase in cytosolic calcium concentration ([Ca2+]i), which consisted of the release of Ca2+ from intracellular stores and the influx of extracellular Ca2+. Both components are dependent on phospholipase C activation. Although the full-length and the truncated receptor utilize the same calcium pathways, they differ in their EC50 values (0.28 nM for the full-length; 0.07 nM for the truncated). These differences in responsiveness may be related to the observed differences in receptor desensitization. The truncated receptor, in contrast to the full-length receptor, does not undergo rapid and long-lasting desensitization. Cells possessing the short isoform of the SP receptor would thus be expected to exhibit a prolonged responsiveness.
Resumo:
Development of in utero gene transfer approaches may provide therapies for genetic disorders with perinatal morbidity. In hemophilia A, prenatal and postnatal bleeding may be catastrophic, and modest increments in factor VIII (FVIII) activity are therapeutic. We performed transuterine i.p. gene transfer at day 15 of gestation in a murine model of hemophilia A. Normal, carrier (XHX), and FVIII-deficient (XHY and XHXH) fetuses injected with adenoviral vectors carrying luciferase or β-galactosidase reporter genes showed high-level gene expression with 91% fetal survival. The live-born rates of normal and FVIII-deficient animals injected in utero with adenovirus murine FVIII (3.3 × 105 plaque-forming units) was 87%. FVIII activity in plasma was 50.7 ± 10.5% of normal levels at day 2 of life, 7.2 ± 2.2% by day 15 of life, and no longer detectable at day 21 of life in hemophilic animals. Injection of higher doses of murine FVIII adenovirus at embryonic day 15 produced supranormal levels of FVIII activity in the neonatal period. PCR analysis identified viral genomes primarily in the liver, intestine, and spleen, although adenoviral DNA was detected in distal tissues when higher doses of adenovirus were administered. These studies show that transuterine i.p. injection of adenoviral vectors produces therapeutic levels of circulating FVIII throughout the neonatal period. The future development of efficient and persisting vectors that produce long-term gene expression may allow for in utero correction of genetic diseases originating in the fetal liver, hematopoietic stem cells, as well as other tissues.
Resumo:
Cellular proliferation and tissue remodeling are central to the regenerative response after a toxic injury to the liver. To explore the role of plasminogen in hepatic tissue remodeling and regeneration, we used carbon tetrachloride to induce an acute liver injury in plasminogen-deficient (Plgo) mice and nontransgenic littermates (Plg+). On day 2 after CCl4, livers of Plg+ and Plgo mice had a similar diseased pale/lacy appearance, followed by restoration of normal appearance in Plg+ livers by day 7. In contrast, Plgo livers remained diseased for as long as 2.5 months, with a diffuse pale/lacy appearance and persistent damage to centrilobular hepatocytes. The persistent centrilobular lesions were not a consequence of impaired proliferative response in Plgo mice. Notably, fibrin deposition was a prominent feature in diseased centrilobular areas in Plgo livers for at least 30 days after injury. Nonetheless, the genetically superimposed loss of the Aα fibrinogen chain (Plgo/Fibo mice) did not correct the abnormal phenotype. These data show that plasminogen deficiency impedes the clearance of necrotic tissue from a diseased hepatic microenvironment and the subsequent reconstitution of normal liver architecture in a fashion that is unrelated to circulating fibrinogen.
Resumo:
Demyelination is a common pathological finding in human neurological diseases and frequently persists as a result of failure of endogenous repair. Transplanted oligodendrocytes and their precursor cells can (re)myelinate axons, raising the possibility of therapeutic intervention. The migratory capacity of transplanted cells is of key importance in determining the extent of (re)myelination and can, at present, be evaluated only by using invasive and irreversible procedures. We have exploited the transferrin receptor as an efficient intracellular delivery device for magnetic nanoparticles, and transplanted tagged oligodendrocyte progenitor cells into the spinal cord of myelin-deficient rats. Cell migration could be easily detected by using three-dimensional magnetic resonance microscopy, with a close correlation between the areas of contrast enhancement and the achieved extent of myelination. The present results demonstrate that magnetic resonance tracking of transplanted oligodendrocyte progenitors is feasible; this technique has the potential to be easily extended to other neurotransplantation studies involving different precursor cell types.
Resumo:
In motion standstill, a quickly moving object appears to stand still, and its details are clearly visible. It is proposed that motion standstill can occur when the spatiotemporal resolution of the shape and color systems exceeds that of the motion systems. For moving red-green gratings, the first- and second-order motion systems fail when the grating is isoluminant. The third-order motion system fails when the green/red saturation ratio produces isosalience (equal distinctiveness of red and green). When a variety of high-contrast red-green gratings, with different spatial frequencies and speeds, were made isoluminant and isosalient, the perception of motion standstill was so complete that motion direction judgments were at chance levels. Speed ratings also indicated that, within a narrow range of luminance contrasts and green/red saturation ratios, moving stimuli were perceived as absolutely motionless. The results provide further evidence that isoluminant color motion is perceived only by the third-order motion system, and they have profound implications for the nature of shape and color perception.
Resumo:
In α1-AT deficiency, a misfolded but functionally active mutant α1-ATZ (α1-ATZ) molecule is retained in the endoplasmic reticulum of liver cells rather than secreted into the blood and body fluids. Emphysema is thought to be caused by the lack of circulating α1-AT to inhibit neutrophil elastase in the lung. Liver injury is thought to be caused by the hepatotoxic effects of the retained α1-ATZ. In this study, we show that several “chemical chaperones,” which have been shown to reverse the cellular mislocalization or misfolding of other mutant plasma membrane, nuclear, and cytoplasmic proteins, mediate increased secretion of α1-ATZ. In particular, 4-phenylbutyric acid (PBA) mediated a marked increase in secretion of functionally active α1-ATZ in a model cell culture system. Moreover, oral administration of PBA was well tolerated by PiZ mice (transgenic for the human α1-ATZ gene) and consistently mediated an increase in blood levels of human α1-AT reaching 20–50% of the levels present in PiM mice and normal humans. Because clinical studies have suggested that only partial correction is needed for prevention of both liver and lung injury in α1-AT deficiency and PBA has been used safely in humans, it constitutes an excellent candidate for chemoprophylaxis of target organ injury in α1-AT deficiency.
Resumo:
For many inborn errors of metabolism, early treatment is critical to prevent long-term developmental sequelae. We have used a gene-therapy approach to demonstrate this concept in a murine model of mucopolysaccharidosis type VII (MPS VII). Newborn MPS VII mice received a single intravenous injection with 5.4 × 106 infectious units of recombinant adeno-associated virus encoding the human β-glucuronidase (GUSB) cDNA. Therapeutic levels of GUSB expression were achieved by 1 week of age in liver, heart, lung, spleen, kidney, brain, and retina. GUSB expression persisted in most organs for the 16-week duration of the study at levels sufficient to either reduce or prevent completely lysosomal storage. Of particular significance, neurons, microglia, and meninges of the central nervous system were virtually cleared of disease. In addition, neonatal treatment of MPS VII mice provided access to the central nervous system via an intravenous route, avoiding a more invasive procedure later in life. These data suggest that gene transfer mediated by adeno-associated virus can achieve therapeutically relevant levels of enzyme very early in life and that the rapid growth and differentiation of tissues does not limit long-term expression.
Resumo:
α-Fetoprotein (AFP) transcription is activated early in hepatogenesis, but is dramatically repressed within several weeks after birth. AFP regulation is governed by multiple elements including three enhancers termed EI, EII, and EIII. All three AFP enhancers continue to be active in the adult liver, where EI and EII exhibit high levels of activity in pericentral hepatocytes with a gradual reduction in activity in a pericentral-periportal direction. In contrast to these two enhancers, EIII activity is highly restricted to a layer of cells surrounding the central veins. To test models that could account for position-dependent EIII activity in the adult liver, we have analyzed transgenes in which AFP enhancers EII and EIII were linked together. Our results indicate that the activity of EIII is dominant over that of EII, indicating that EIII is a potent negative regulatory element in all hepatocytes except those encircling the central veins. We have localized this negative activity to a 340-bp fragment. This suggests that enhancer III may be involved in postnatal AFP repression.
Resumo:
The advent of jellyfish green fluorescent protein and its spectral variants, together with promising new fluorescent proteins from other classes of the Cnidarian phylum (coral and anemones), has greatly enhanced and promises to further boost the detection and localization of proteins in cell biology. It has been less widely appreciated that highly sensitive methods have also recently been developed for detecting the movement and localization in living cells of the very molecules that precede proteins in the gene expression pathway, i.e. RNAs. These approaches include the microinjection of fluorescent RNAs into living cells, the in vivo hybridization of fluorescent oligonucleotides to endogenous RNAs and the expression in cells of fluorescent RNA-binding proteins. This new field of ‘fluorescent RNA cytochemistry’ is summarized in this article, with emphasis on the biological insights it has already provided. These new techniques are likely to soon collaborate with other emerging approaches to advance the investigation of RNA birth, RNA–protein assembly and ribonucleoprotein particle transport in systems such as oocytes, embryos, neurons and other somatic cells, and may even permit the observation of viral replication and transcription pathways as they proceed in living cells, ushering in a new era of nucleic acids research in vivo.
Resumo:
Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzyme deficiency leads to impaired catabolism of α-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal α-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human α-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, α-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20–35% of that of the normal mice. The transduced animals continued to show higher α-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or α-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.
Resumo:
The mobility of elements within plants contributes to a plant species' tolerance of nutrient deficiencies in the soil. The genetic manipulation of within-plant nutrient movement may therefore provide a means to enhance plant growth under conditions of variable soil nutrient availability. In these experiments tobacco (Nicotiana tabacum) was engineered to synthesize sorbitol, and the resultant effect on phloem mobility of boron (B) was determined. In contrast to wild-type tobacco, transgenic tobacco plants containing sorbitol exhibit a marked increase in within-plant B mobility and a resultant increase in plant growth and yield when grown with limited or interrupted soil B supply. Growth of transgenic tobacco could be maintained by reutilization of B present in mature tissues or from B supplied as a foliar application to mature leaves. In contrast, B present in mature leaves of control tobacco lines could not be used to provide the B requirements for new plant growth. 10B-labeling experiments verified that B is phloem mobile in transgenic tobacco but is immobile in control lines. These results demonstrate that the transgenic enhancement of within-plant nutrient mobility is a viable approach to improve plant tolerance of nutrient stress.
Resumo:
Integrins link the cell's cytoskeleton to the extracellular matrix, as well as to receptors on other cells. These links occur not only at focal contacts but also at smaller integrin-containing protein complexes outside of focal contacts. We previously demonstrated the importance of focal contact-independent integrin–cytoskeleton interactions of β2 integrins: activation of adhesion resulted from a release of integrins from cytoskeletal constraints. To determine whether changes in integrin–cytoskeleton interactions were related to activation of the integrin, we used single particle tracking to examine focal contact-independent cytoskeletal associations of αIIbβ3-integrin, in which activation results in a large conformational change. Direct activation of αIIbβ3 by mutation did not mimic activation of lymphocytes with phorbol ester, because it enhanced integrin–cytoskeleton interactions, whereas activation of lymphocytes decreased them. Using additional integrin mutants, we found that both α- and β-cytoplasmic domains were required for these links. This suggests that 1) both β2- and β3-integrins interact with the cytoskeleton outside of focal contacts; 2) activation of a cell and activation of an integrin are distinct processes, and both can affect integrin–cytoskeleton interactions; and 3) the role of the α-subunit in integrin–cytoskeleton interactions in at least some circumstances is more direct than generally supposed.
Prostaglandins are required for CREB activation and cellular proliferation during liver regeneration
Resumo:
The liver responds to multiple types of injury with an extraordinarily well orchestrated and tightly regulated form of regeneration. The response to partial hepatectomy has been used as a model system to elucidate the molecular basis of this regenerative response. In this study, we used cyclooxygenase (COX)-selective antagonists and -null mice to determine the role of prostaglandin signaling in the response of liver to partial hepatectomy. The results show that liver regeneration is markedly impaired when both COX-1 and COX-2 are inhibited by indocin or by a combination of the COX-1 selective antagonist, SC-560, and the COX-2 selective antagonist, SC-236. Inhibition of COX-2 alone partially inhibits regeneration whereas inhibition of COX-1 alone tends to delay regeneration. Neither the rise in IL-6 nor the activation of signal transducer and activator of transcription-3 (STAT3) that is seen during liver regeneration is inhibited by indocin or the selective COX antagonists. In contrast, indocin treatment prevents the activation of CREB by phosphorylation that occurs during hepatic regeneration. These data indicate that prostaglandin signaling is required during liver regeneration, that COX-2 plays a particularly important role but COX-1 is also involved, and implicate the activation of CREB rather than STAT3 as the mediator of prostaglandin signaling during liver regeneration.
Resumo:
Portal hypertension resulting from increased intrahepatic resistance is a common complication of chronic liver diseases and a leading cause of death in patients with liver cirrhosis, a scarring process of the liver that includes components of both increased fibrogenesis and wound contraction. A reduced production of nitric oxide (NO) resulting from an impaired enzymatic function of endothelial NO synthase and an increased contraction of hepatic stellate cells (HSCs) have been demonstrated to contribute to high intrahepatic resistance in the cirrhotic liver. 2-(Acetyloxy) benzoic acid 3-(nitrooxymethyl) phenyl ester (NCX-1000) is a chemical entity obtained by adding an NO-releasing moiety to ursodeoxycholic acid (UDCA), a compound that is selectively metabolized by hepatocytes. In this study we have examined the effect of NCX-1000 and UDCA on liver fibrosis and portal hypertension induced by i.p. injection of carbon tetrachloride in rats. Our results demonstrated that although both treatments reduced liver collagen deposition, NCX-1000, but not UDCA, prevented ascite formation and reduced intrahepatic resistance in carbon tetrachloride-treated rats as measured by assessing portal perfusion pressure. In contrast to UDCA, NCX-1000 inhibited HSC contraction and exerted a relaxing effect similar to the NO donor S-nitroso-N-acetylpenicillamine. HSCs were able to metabolize NCX-1000 and release nitrite/nitrate in cell supernatants. In aggregate these data indicate that NCX-1000, releasing NO into the liver microcirculation, may provide a novel therapy for the treatment of patients with portal hypertension.