892 resultados para Spatial variation
Resumo:
The central thesis in the article is that the venture creation process is different for innovative versus imitative ventures. This holds up; the pace of the process differs by type of venture as do, in line with theory-based hypotheses, the effects of certain human capital (HC) and social capital (SC) predictors. Importantly, and somewhat unexpectedly, the theoretically derived models using HC, SC, and certain controls are relatively successful explaining progress in the creation process for the minority of innovative ventures, but achieve very limited success for the imitative majority. This may be due to a rationalistic bias in conventional theorizing and suggests that there is need for considerable theoretical development regarding the important phenomenon of new venture creation processes. Another important result is that the building up of instrumental social capital, which we assess comprehensively and as a time variant construct, is important for making progress with both types of ventures, and increasingly, so as the process progresses. This result corroborates with stronger operationalization and more appropriate analysis method what previously published research has only been able to hint at.
Resumo:
This chapter describes an innovative method of curriculum design that is based on combining phenomenographic research, and the associated variation theory of learning, with the notion of disciplinary threshold concepts to focus specialised design attention on the most significant and difficult parts of the curriculum. The method involves three primary stages: (i) identification of disciplinary concepts worthy of intensive curriculum design attention, using the criteria for threshold concepts; (ii) action research into variation in students’ understandings/misunderstandings of those concepts, using phenomenography as the research approach; (iii) design of learning activities to address the poorer understandings identified in the second stage, using variation theory as a guiding framework. The curriculum design method is inherently theory and evidence based. It was developed and trialed during a two-year project funded by the Australian Learning and Teaching Council, using physics and law disciplines as case studies. Disciplinary teachers’ perceptions of the impact of the method on their teaching and understanding of student learning were profound. Attempts to measure the impact on student learning were less conclusive; teachers often unintentionally deviated from the design when putting it into practice for the first time. Suggestions for improved implementation of the method are discussed.
Resumo:
Achieving sustainable urban development is identified as one ultimate goal of many contemporary planning endeavours and has become central to formulation of urban planning policies. Within this concept, land-use and transport integration is highlighted as one of the most important and attainable policy objectives. In many cities, integration is embraced as an integral part of local development plans, and a number of key integration principles are identified. However, the lack of available evaluation methods to measure extent of urban sustainability levels prevents successful implementation of these principles. This paper introduces a new indicator-based spatial composite indexing model developed to measure sustainability performance of urban settings by taking into account land-use and transport integration principles. Model indicators are chosen via a thorough selection process in line with key principles of land-use and transport integration. These indicators are grouped into categories and themes according to their topical relevance. These indicators are then aggregated to form a spatial composite index to portray an overview of the sustainability performance of the pilot study area used for model demonstration. The study results revealed that the model is a practical instrument for evaluating success of local integration policies and visualizing sustainability performance of built environments and useful in both identifying problematic areas as well as formulating policy interventions.
Resumo:
Floods are among the most devastating events that affect primarily tropical, archipelagic countries such as the Philippines. With the current predictions of climate change set to include rising sea levels, intensification of typhoon strength and a general increase in the mean annual precipitation throughout the Philippines, it has become paramount to prepare for the future so that the increased risk of floods on the country does not translate into more economic and human loss. Field work and data gathering was done within the framework of an internship at the former German Technical Cooperation (GTZ) in cooperation with the Local Government Unit of Ormoc City, Leyte, The Philippines, in order to develop a dynamic computer based flood model for the basin of the Pagsangaan River. To this end, different geo-spatial analysis tools such as PCRaster and ArcGIS, hydrological analysis packages and basic engineering techniques were assessed and implemented. The aim was to develop a dynamic flood model and use the development process to determine the required data, availability and impact on the results as case study for flood early warning systems in the Philippines. The hope is that such projects can help to reduce flood risk by including the results of worst case scenario analyses and current climate change predictions into city planning for municipal development, monitoring strategies and early warning systems. The project was developed using a 1D-2D coupled model in SOBEK (Deltares Hydrological modelling software package) and was also used as a case study to analyze and understand the influence of different factors such as land use, schematization, time step size and tidal variation on the flood characteristics. Several sources of relevant satellite data were compared, such as Digital Elevation Models (DEMs) from ASTER and SRTM data, as well as satellite rainfall data from the GIOVANNI server (NASA) and field gauge data. Different methods were used in the attempt to partially calibrate and validate the model to finally simulate and study two Climate Change scenarios based on scenario A1B predictions. It was observed that large areas currently considered not prone to floods will become low flood risk (0.1-1 m water depth). Furthermore, larger sections of the floodplains upstream of the Lilo- an’s Bridge will become moderate flood risk areas (1 - 2 m water depth). The flood hazard maps created for the development of the present project will be presented to the LGU and the model will be used to create a larger set of possible flood prone areas related to rainfall intensity by GTZ’s Local Disaster Risk Management Department and to study possible improvements to the current early warning system and monitoring of the basin section belonging to Ormoc City; recommendations about further enhancement of the geo-hydro-meteorological data to improve the model’s accuracy mainly on areas of interest will also be presented at the LGU.
Resumo:
This paper presents a new multi-scale place recognition system inspired by the recent discovery of overlapping, multi-scale spatial maps stored in the rodent brain. By training a set of Support Vector Machines to recognize places at varying levels of spatial specificity, we are able to validate spatially specific place recognition hypotheses against broader place recognition hypotheses without sacrificing localization accuracy. We evaluate the system in a range of experiments using cameras mounted on a motorbike and a human in two different environments. At 100% precision, the multiscale approach results in a 56% average improvement in recall rate across both datasets. We analyse the results and then discuss future work that may lead to improvements in both robotic mapping and our understanding of sensory processing and encoding in the mammalian brain.
Resumo:
OBJECTIVE The aim of the study is to examine the spatiotemporal pattern of Japanese Encephalitis (JE) in mainland China during 2002-2010. Specific objectives of the study were to quantify the temporal variation in incidence of JE cases, to determine if clustering of JE cases exists, to detect high risk spatiotemporal clusters of JE cases and to provide evidence-based preventive suggestions to relevant stakeholders. METHODS Monthly JE cases at the county level in mainland China during 2002-2010 were obtained from the China Information System for Diseases Control and Prevention (CISDCP). For the purpose of the analysis, JE case counts for nine years were aggregated into four temporal periods (2002; 2003-2005; 2006; and 2007-2010). Local Indicators of Spatial Association and spatial scan statistics were performed to detect and evaluate local high risk space-time clusters. RESULTS JE incidence showed a decreasing trend from 2002 to 2005 but peaked in 2006, then fluctuated over the study period. Spatial cluster analysis detected high value clusters, mainly located in Southwestern China. Similarly, we identified a primary spatiotemporal cluster of JE in Southwestern China between July and August, with the geographical range of JE transmission increasing over the past years. CONCLUSION JE in China is geographically clustered and its spatial extent dynamically changed during the last nine years in mainland China. This indicates that risk factors for JE infection are likely to be spatially heterogeneous. The results may assist national and local health authorities in the development/refinement of a better preventive strategy and increase the effectiveness of public health interventions against JE transmission.
Resumo:
Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.
Resumo:
BACKGROUND Dengue fever (DF) outbreaks often arise from imported DF cases in Cairns, Australia. Few studies have incorporated imported DF cases in the estimation of the relationship between weather variability and incidence of autochthonous DF. The study aimed to examine the impact of weather variability on autochthonous DF infection after accounting for imported DF cases and then to explore the possibility of developing an empirical forecast system. METHODOLOGY/PRINCIPAL FINDS Data on weather variables, notified DF cases (including those acquired locally and overseas), and population size in Cairns were supplied by the Australian Bureau of Meteorology, Queensland Health, and Australian Bureau of Statistics. A time-series negative-binomial hurdle model was used to assess the effects of imported DF cases and weather variability on autochthonous DF incidence. Our results showed that monthly autochthonous DF incidences were significantly associated with monthly imported DF cases (Relative Risk (RR):1.52; 95% confidence interval (CI): 1.01-2.28), monthly minimum temperature ((o)C) (RR: 2.28; 95% CI: 1.77-2.93), monthly relative humidity (%) (RR: 1.21; 95% CI: 1.06-1.37), monthly rainfall (mm) (RR: 0.50; 95% CI: 0.31-0.81) and monthly standard deviation of daily relative humidity (%) (RR: 1.27; 95% CI: 1.08-1.50). In the zero hurdle component, the occurrence of monthly autochthonous DF cases was significantly associated with monthly minimum temperature (Odds Ratio (OR): 1.64; 95% CI: 1.01-2.67). CONCLUSIONS/SIGNIFICANCE Our research suggested that incidences of monthly autochthonous DF were strongly positively associated with monthly imported DF cases, local minimum temperature and inter-month relative humidity variability in Cairns. Moreover, DF outbreak in Cairns was driven by imported DF cases only under favourable seasons and weather conditions in the study.
Resumo:
OBJECTIVES To investigate and describe the relationship between indigenous Australian populations, residential aged care services, and community-onset Staphylococcus aureus bacteremia (SAB) among patients admitted to public hospitals in Queensland, Australia. DESIGN Ecological study. METHODS We used administrative healthcare data linked to microbiology results from patients with SAB admitted to Queensland public hospitals from 2005 through 2010 to identify community-onset infections. Data about indigenous Australian population and residential aged care services at the local government area level were obtained from the Queensland Office of Economic and Statistical Research. Associations between community-onset SAB and indigenous Australian population and residential aged care services were calculated using Poisson regression models in a Bayesian framework. Choropleth maps were used to describe the spatial patterns of SAB risk. RESULTS We observed a 21% increase in relative risk (RR) of bacteremia with methicillin-susceptible S. aureus (MSSA; RR, 1.21 [95% credible interval, 1.15-1.26]) and a 24% increase in RR with nonmultiresistant methicillin-resistant S. aureus (nmMRSA; RR, 1.24 [95% credible interval, 1.13-1.34]) with a 10% increase in the indigenous Australian population proportion. There was no significant association between RR of SAB and the number of residential aged care services. Areas with the highest RR for nmMRSA and MSSA bacteremia were identified in the northern and western regions of Queensland. CONCLUSIONS The RR of community-onset SAB varied spatially across Queensland. There was increased RR of community-onset SAB with nmMRSA and MSSA in areas of Queensland with increased indigenous population proportions. Additional research should be undertaken to understand other factors that increase the risk of infection due to this organism.
Resumo:
Malaria has been a heavy social and health burden in the remote and poor areas in southern China. Analyses of malaria epidemic patterns can uncover important features of malaria transmission. This study identified spatial clusters, seasonal patterns, and geographic variations of malaria deaths at a county level in Yunnan, China, during 1991–2010. A discrete Poisson model was used to identify purely spatial clusters of malaria deaths. Logistic regression analysis was performed to detect changes in geographic patterns. The results show that malaria mortality had declined in Yunnan over the study period and the most likely spatial clusters (relative risk [RR] = 23.03–32.06, P < 0.001) of malaria deaths were identified in western Yunnan along the China–Myanmar border. The highest risk of malaria deaths occurred in autumn (RR = 58.91, P < 0.001) and summer (RR = 31.91, P < 0.001). The results suggested that the geographic distribution of malaria deaths was significantly changed with longitude, which indicated there was decreased mortality of malaria in eastern areas over the last two decades, although there was no significant change in latitude during the same period. Public health interventions should target populations in western Yunnan along border areas, especially focusing on floating populations crossing international borders.
Resumo:
This study investigates the variability in response of optically stimulated luminescence dosimeters (OSLDs). Examining the source of sensitivity variations in these dosimeters allows for a more comprehensive understanding of the Landauer nanoDots and their potential for current and future applications. In this work, OSLDs were scanned with a MicroCT scanner to determine potential sources for the variation in relative sensitivity across a selection of Landauer nanoDot dosimeters. Specifically, the correlation between a dosimeters relative sensitivity and the loading density of Al2O3:C powder was determined. When extrapolating the sensitive volume's radiodensity from the CT data, it was shown that there is a non-uniform distribution in crystal growth. It was calculated that a 0.05% change in the nominal volume of the chip produces a 1% change in the overall response. Additionally, the ‘true’ volume of an OSLD's sensitive material is, on average, 18% less than that which has been reported in literature, mainly due to the presence of air cavities in the material's structure. This work demonstrated that the amount of sensitive material is approximately linked to the total correction factor.
Resumo:
Human spatial environments must adapt to climate change. Spatial planning is central to climate change adaptation and potentially well suited to the task, however neoliberal influences and trends threaten this capacity. This paper explores the significance of neoliberal influences on urban planning to climate change adaptation. The potential form of spatial adaptation within the context of a planning environment influenced by neoliberal principles is evaluated. This influence relates to spatial scale, temporal scale, responsibility for action, strategies and mechanisms, accrual of benefits, negotiation of priorities and approach to uncertainty. This paper presents a conceptual framework of the influence of neoliberalism on spatial adaptation. It identifies the potential characteristics, challenges and opportunities of spatial adaptation under a neoliberal frame. The neoliberal frame does not entirely preclude spatial adaptation but significantly influence its form. Neoliberal approaches involve individual action in response to private incentives and near term impacts while collective action, regulatory mechanisms and long term planning is approached cautiously. Challenges concern the degree to which collective action and a long term orientation are necessary, how individual adaptation relates to collective vulnerability and the prioritisation of adaptation by markets. Opportunities might involve the operability of individual and local adaptation, the existence of private incentives to adapt and the potential to align adaptation with entrepreneurial projects.
Resumo:
BACKGROUND Pandemic influenza A (H1N1) has a significant public health impact. This study aimed to examine the effect of socio-ecological factors on the transmission of H1N1 in Brisbane, Australia. METHODOLOGY We obtained data from Queensland Health on numbers of laboratory-confirmed daily H1N1 in Brisbane by statistical local areas (SLA) in 2009. Data on weather and socio-economic index were obtained from the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. A Bayesian spatial conditional autoregressive (CAR) model was used to quantify the relationship between variation of H1N1 and independent factors and to determine its spatiotemporal patterns. RESULTS Our results show that average increase in weekly H1N1 cases were 45.04% (95% credible interval (CrI): 42.63-47.43%) and 23.20% (95% CrI: 16.10-32.67%), for a 1 °C decrease in average weekly maximum temperature at a lag of one week and a 10mm decrease in average weekly rainfall at a lag of one week, respectively. An interactive effect between temperature and rainfall on H1N1 incidence was found (changes: 0.71%; 95% CrI: 0.48-0.98%). The auto-regression term was significantly associated with H1N1 transmission (changes: 2.5%; 95% CrI: 1.39-3.72). No significant association between socio-economic indexes for areas (SEIFA) and H1N1 was observed at SLA level. CONCLUSIONS Our results demonstrate that average weekly temperature at lag of one week and rainfall at lag of one week were substantially associated with H1N1 incidence at a SLA level. The ecological factors seemed to have played an important role in H1N1 transmission cycles in Brisbane, Australia.
Resumo:
Olfactory ensheathing cells (OECs) are specialized glial cells in the mammalian olfactory system supporting growth of axons from the olfactory epithelium into the olfactory bulb. OECs in the olfactory bulb can be subdivided into OECs of the outer nerve layer and the inner nerve layer according to the expression of marker proteins and their location in the nerve layer. In the present study, we have used confocal calcium imaging of OECs in acute mouse brain slices and olfactory bulbs in toto to investigate physiological differences between OEC subpopulations. OECs in the outer nerve layer, but not the inner nerve layer, responded to glutamate, ATP, serotonin, dopamine, carbachol, and phenylephrine with increases in the cytosolic calcium concentration. The calcium responses consisted of a transient and a tonic component, the latter being mediated by store-operated calcium entry. Calcium measurements in OECs during the first three postnatal weeks revealed a downregulation of mGluR(1) and P2Y(1) receptor-mediated calcium signaling within the first 2 weeks, suggesting that the expression of these receptors is developmentally controlled. In addition, electrical stimulation of sensory axons evoked calcium signaling via mGluR(1) and P2Y(1) only in outer nerve layer OECs. Downregulation of the receptor-mediated calcium responses in postnatal animals is reflected by a decrease in amplitude of stimulation-evoked calcium transients in OECs from postnatal days 3 to 21. In summary, the results presented reveal striking differences in receptor responses during development and in axon-OEC communication between the two subpopulations of OECs in the olfactory bulb.
Resumo:
An important aspect of decision support systems involves applying sophisticated and flexible statistical models to real datasets and communicating these results to decision makers in interpretable ways. An important class of problem is the modelling of incidence such as fire, disease etc. Models of incidence known as point processes or Cox processes are particularly challenging as they are ‘doubly stochastic’ i.e. obtaining the probability mass function of incidents requires two integrals to be evaluated. Existing approaches to the problem either use simple models that obtain predictions using plug-in point estimates and do not distinguish between Cox processes and density estimation but do use sophisticated 3D visualization for interpretation. Alternatively other work employs sophisticated non-parametric Bayesian Cox process models, but do not use visualization to render interpretable complex spatial temporal forecasts. The contribution here is to fill this gap by inferring predictive distributions of Gaussian-log Cox processes and rendering them using state of the art 3D visualization techniques. This requires performing inference on an approximation of the model on a discretized grid of large scale and adapting an existing spatial-diurnal kernel to the log Gaussian Cox process context.