993 resultados para Soils - Tillage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analysed 22 strawberry and soil samples after their collection over the course of 2 years to compare the residue profiles from organic farming with integrated pest management practices in Portugal. For sample preparation, we used the citrate-buffered version of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. We applied three different methods for analysis: (1) 27 pesticides were targeted using LC-MS/MS; (2) 143 were targeted using low pressure GC-tandem mass spectrometry (LP-GC-MS/MS); and (3) more than 600 pesticides were screened in a targeted and untargeted approach using comprehensive, two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS). Comparison was made of the analyses using the different methods for the shared samples. The results were similar, thereby providing satisfactory confirmation of both similarly positive and negative findings. No pesticides were found in the organic-farmed samples. In samples from integrated pest management practices, nine pesticides were determined and confirmed to be present, ranging from 2 μg kg−1 for fluazifop-pbutyl to 50 μg kg−1 for fenpropathrin. Concentrations of residues in strawberries were less than European maximum residue limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of the 13th International UFZ-Deltares Conference on Sustainable Use and Management of Soil, Sediment and Water Resources - 9–12 June 2015 • Copenhagen, Denmark

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia - PTDC/AGR-­AAM/101643/2008 NanoDC ; SFRH/BD/76070/2011 ; FP7-­PEOPLE-­IRSES-­2010-­269289-­ ELECTROACROSS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In light of the fact that literature on toxicity of heavy metals in non-acidified freshwater systems is sparse, this project was initiated to conduct an environmental assessment of Lake Gibson. Chemistry of soils from adjacent areas and vineyards in the region provide a comparative background database. Water quality determinations were used to identify and highlight areas of environmental concern within the Lake Gibson watershed. A Shelby Corer was used to obtain 66 sediment cores from Lake Gibson. These were sectioned according to lithology and color to yield 298 samples. A suite of 122 soil samples was collected in the region and vicinity of Lake Gibson. All were tested for metals and some for Total Petroleum Hydrocarbons (TPH). Evaluation of the results leads to the following conclusions: 1. Metal concentrations ofAI, Cd, Cu, Cr, Pb, Ni, Fe and Zn in soils from the Niagara Region are well below background limits set by the Ministry of the Environment and Energy (MOEE) for provincial soils. 2. There is a spatial and depth difference for some of the metals within the various soils. The Cr, Ni and Pb contents of soils vary throughout the region (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects. of moisture, cation concentration, dens ity , temper~ t ure and grai n si ze on the electrical resistivity of so il s are examined using laboratory prepared soils. An i nexpen si ve method for preparing soils of different compositions was developed by mixing various size fractions i n the laboratory. Moisture and cation c oncentration are related to soil resistivity by powe r functions, whereas soil resistiv ity and temperature, density, Yo gravel, sand , sil t, and clay are related by exponential functions . A total of 1066 cases (8528 data) from all the experiments were used in a step-wise multiple linear r egression to determine the effect of each variable on soil resistivity. Six variables out of the eight variables studied account for 92.57/. of the total variance in so il resistivity with a correlation coefficient of 0.96. The other two variables (silt and gravel) did not increase the · variance. Moisture content was found to be - the most important Yo clay. variable- affecting s oil res istivi ty followed by These two variables account for 90.81Yo of the total variance in soil resistivity with a correlation ~oefficient ·.of 0 . 95. Based on these results an equation to ' ~~ed{ ct soil r esist ivi ty using moisture and Yo clay is developed . To t est the predicted equation, resistivity measurements were made on natural soils both in s i tu a nd i n the laboratory. The data show that field and laboratory measurements are comparable. The predicted regression line c losely coinciqes with resistivity data from area A and area B soils ~clayey and silty~clayey sands). Resistivity data and the predicted regression line in the case of c layey soils (clays> 40%) do not coincide, especially a t l ess than 15% moisture. The regression equation overestimates the resistivity of so i l s from area C and underestimates for area D soils. Laboratory prepared high clay soils give similar trends. The deviations are probably caused by heterogeneous distribution of mo i sture and difference in the type o f cl ays present in these soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Niagara P e n i n s u l a Supports a f l o u r i s h i n g grape and wine i n d u s t r y , where much of the potassium f e r t i l i z e r a p p l i e d to the vineyard s o i l s may not show up in the f r u i t or vines but is fixed by the clay m i n e r a l s in the s o i l . Soil samples were c o l l e c t e d on a n o r t h - s o u t h l i ne through a high d e n s i t y of v i n e y a r d s and examined by x - r a y d i f f r a c t i o n to determine the r e l a t i o n s h i p of potassium with r e s p e c t to c l a y minerals p r e s e n t . The i n v e s t i g a t i o n shows the p h y l l o s i l i c a t e m i n e r a l s present t o be i l l i t e , c h l o r i t e and v e r m i c u l i t e . The v e r m i c u l i t e p r e s e n t is not t h e usual M g - v e r m i c u l i t e , but a K - v e r m i c u l i t e which can be c o n s i d e r e d as a degraded i l l i t e - - t h a t i s , an i l l i t e which has l o s t potassium i o n s . The r e s u l t i n g K - d e f i c i e n t mineral possesses a very l i m i t e d expansion l a t t i ce and is capable of c a p t u r i n g potassium ions and c o n v e r t i n g back t o the i l l i t e form. A g r i c u l t u r a l l y , t h i s causes potassium d e f i c i e n c y in p l a n t s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined gas chromatography and mass spectrometry has been used to identify unknown residues in soils (especially pesticides). The effect of U.V. light on DDT and linuron and quantitative estimation of elemental sulfur in different soils has also been carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les métaux lourds (ML) s’accumulent de plus en plus dans les sols à l’échelle mondiale, d’une part à cause des engrais minéraux et divers produits chimiques utilisés en agriculture intensive, et d’autre part à cause des activités industrielles. Toutes ces activités génèrent des déchets toxiques qui s’accumulent dans l’environnement. Les ML ne sont pas biodégradables et leur accumulation cause donc des problèmes de toxicité des sols et affecte la biodiversité des microorganismes qui y vivent. La fertilisation en azote (N) est une pratique courante en agriculture à grande échelle qui permet d’augmenter la fertilité des sols et la productivité des cultures. Cependant, son utilisation à long terme cause plusieurs effets néfastes pour l'environnement. Par exemple, elle augmente la quantité des ML dans les sols, les nappes phréatiques et les plantes. En outre, ces effets néfastes réduisent et changent considérablement la biodiversité des écosystèmes terrestres. La structure des communautés des champignons mycorhiziens à arbuscules (CMA) a été étudiée dans des sols contaminés par des ML issus de la fertilisation à long terme en N. Le rôle des différentes espèces de CMA dans l'absorption et la séquestration des ML a été aussi investigué. Dans une première expérience, la structure des communautés de CMA a été analysée à partir d’échantillons de sols de sites contaminés par des ML et de sites témoins non-contaminés. Nous avons constaté que la diversité des CMA indigènes a été plus faible dans les sols et les racines des plantes récoltées à partir de sites contaminés par rapport aux sites noncontaminés. Nous avons également constaté que la structure de la communauté d'AMF a été modifiée par la présence des ML dans les sols. Certains ribotypes des CMA ont été plus souvent associés aux sites contaminés, alors que d’autres ribotypes ont été associés aux sites non-contaminés. Cependant, certains ribotypes ont été observés aussi bien dans les sols pollués que non-pollués. Dans une deuxième expérience, les effets de la fertilisation organique et minérale (N) sur les différentes structures des communautés des CMA ont été étudiés. La variation de la structure de la communauté de CMA colonisant les racines a été analysée en fonction du type de fertilisation. Certains ribotypes de CMA étaient associés à la fertilisation organique et d'autres à la fertilisation minérale. En revanche, la fertilisation minérale a réduit le nombre de ribotypes de CMA alors que la fertilisation organique l’a augmenté. Dans cette expérience, j’ai démontré que le changement de structure des communautés de CMA colonisant des racines a eu un effet significatif sur la productivité des plantes. Dans une troisième expérience, le rôle de deux espèces de CMA (Glomus irregulare et G. mosseae) dans l'absorption du cadmium (Cd) par des plants de tournesol cultivés dans des sols amendés avec trois niveaux différents de Cd a été évalué. J’ai démontré que les deux espèces de CMA affectent différemment l’absorption ou la séquestration de ce ML par les plants de tournesol. Cette expérience a permis de mieux comprendre le rôle potentiel des CMA dans l'absorption des ML selon la concentration de cadmium dans le sol et les espèces de CMA. Mes recherches de doctorat démontrent donc que la fertilisation en N affecte la structure des communautés des CMA dans les racines et le sol. Le changement de structure de la communauté de CMA colonisant les racines affecte de manière significative la productivité des plantes. J’ai aussi démontré que, sous nos conditions expériemntales, l’espèce de CMA G. irregulare a été observée dans tous les sites (pollués et non-pollués), tandis que le G. mosseae n’a été observé en abondance que dans les sites contaminés. Par conséquent, j’ai étudié le rôle de ces deux espèces (G. irregulare et G. mosseae) dans l'absorption du Cd par le tournesol cultivé dans des sols amendés avec trois différents niveaux de Cd en serre. Les résultats indiquent que les espèces de CMA ont un potentiel différent pour atténuer la toxicité des ML dans les plantes hôtes, selon le niveau de concentration en Cd. En conclusion, mes travaux suggèrent que le G. irregulare est une espèce potentiellement importante pour la phytoextration du Cd, alors que le G. mosseae pourrait être une espèce appropriée pour phytostabilisation du Cd et du Zn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed at critically looking at the current practice of the installation of compacted clay liner using bentonite enhanced sand (BES). The application of bentonite is currently the most accepted practice for lining purposes. The ideal bentonite sand combination, which satisfies the liner requirements is 20% bentonite and 80% sand, was selected as one of the liner materials for the investigation of development of desiccation cracks. Locally available sundried marine clay and its combination with bentonite were also included in the study. The desiccation tests on liner materials were conducted for wet/dry cycles to simulate the seasonal variations. Digital image processing techniques were used to measure the crack intensity factor (CIF), a useful and effective parameter for quantification of desiccation cracking. The repeatability of the tests could be well established, as the variation in CIF values of identical samples had a very narrow range of 0 to 2%. The studies on the development of desiccation cracks showed that the CIF of bentonite enhanced sand mixture (BES) was 18.09%, 39.75% and 21.22% for the first, second and third cycles respectively, while it was only 9.83%, 7.52% and 4.58% respectively for sun dried marine clay (SMC). Thus the locally available, alternate liner material suggested, viz SMC, is far superior to BES, when subjected to alternate wet/dry cycles. Further, the improvement of these liner materials when amended with randomly distributed fibre reinforcements was also investigated. Three types of fibres ,namely nylon fibre, polypropylene monofilament and polypropylene fibre mesh were used for the study of fibre amended BES and SMC.The influence of these amendments on the properties of the above liner materials is also studied. The results showed that there is definite improvement in the properties of the liner materials when it is reinforced with discrete random fibres. The study also proved that the desiccation cracks could be controlled with the help of fibre reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constructional activities in the coastal belt of our country often demand deep foundations because of the poor engineering properties and the related problems arising from weak soil at shallow depths.The soil profile in coastal area often consists of very loose sandy soils extending to a depth of 3 to 4 m from the ground level underlain by clayey soils of medium consistency.The very low shearing resistance of the foundation bed causes local as well as punching shear failure.Hence structures built on these soils may suffer from excessive settlements.This type of soil profile is very common in coastal areas of Kerala,especially in Cochin. Further,the high water table and limited depth of the top sandy layer in these areas restrict the depth of foundation thereby further reducing the safe bearing capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil moisture plays a cardinal role in sustaining eclological balance and agricultural development – virtually the very existence of life on earth. Because of the growing shortage of water resources, we have to use the available water most efficiently by proper management. Better utilization of rainfall or irrigation management depends largely on the water retention characteristics of the soil.Soil water retention is essential to life and it provides an ongoing supply of water to plants between periods of irrigation so as to allow their continued growth and survival.It is essential to maintain readily available water in the soil if crops are to sustain satisfactory growth. The plant growth may be retarded if the soil moisture is either deficient or excessive. The optimum moisture content is that moisture which leads to optimum growth of plant. When watering is done, the amount of water supplied should be such that the water content is equal to the field capacity that is the water remained in the saturated soil after gravitational drainage. Water will gradually be utilized consumptively by plants after the water application, and the soil moisture will start falling. When the water content in the soil reaches the value known as permanent wilting point (when the plant starts wilting) fresh dose of irrigation may be done so that water content is again raised to the field capacity of soil.Soil differ themselves in some or all the properties depending on the difference in the geotechnical and environmental factors. Soils serve as a reservoir of the nutrients and water required for crops.Study of soil and its water holding capacity is essential for the efficient utilization of irrigation water. Hence the identification of the geotechnical parameters which influence the water retention capacity, chemical properties which influence the nutrients and the method to improve these properties have vital importance in irrigation / agricultural engineering. An attempt in this direction has been made in this study by conducting the required tests on different types of soil samples collected from various locations in Trivandrum district Kerala, with and without admixtures like coir pith, coir pith compost and vermi compost. Evaluation of the results are presented and a design procedure has been proposed for a better irrigation scheduling and management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impact of teak and eucalypt monoculture on soils in the highlands of kerala .The thesis is arranged under nine chapters. The first chapter introduces the topic, reviews the literature pertaining to the study and presents the aims and objectives of the study. The second chapter briefly describes the study location. experimental design and sampling methodology. The third chapter deals with physical properties of plantation soils. The fourth and fifth chapters cover the chemical properties and macro- and micro nutrient status in plantation soils. The organic matter fractions in plantation soils are described in sixth chapter. First part of the seventh chapter presents the results of factor analysis and the second part deals with fertility index of plantations. All these chapters are self-contained with separate introduction, materials and methods and results and discussions. A general discussion of the results is included in the eighth chapter. The ninth chapter includes conclusions and summary A study that traces the variation in physical and chemical properties and nutrient status of teak soils with age of plantations, till the end of a rotation period is thus highly pertinent. Such a study, with an adjacent natural forest as a reference stand will not only generate information that will help us to understand the pattern of variation in soil properties, but will also aid us in formulating better management strategies. The data generated by such a study will be more useful if accompanied by information on soil changes following a short rotation plantation crop. As Eucalypt, a short rotation crop is the second major plantation crop in Kerala, it was chosen for the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil microorganisms play a main part in organic matter decomposition and are consequently necessary to soil ecosystem processes maintaining primary productivity of plants. In light of current concerns about the impact of cultivation and climate change on biodiversity and ecosystem performance, it is vital to expand a complete understanding of the microbial community ecology in our soils. In the present study we measured the depth wise profile of microbial load in relation with important soil physicochemical characteristics (soil temperature, soil pH, moisture content, organic carbon and available NPK) of the soil samples collected from Mahatma Gandhi University Campus, Kottayam (midland region of Kerala). Soil cores (30 cm deep) were taken and the cores were separated into three 10-cm depths to examine depth wise distribution. In the present study, bacterial load ranged from 141×105 to 271×105 CFU/g (10cm depth), from 80×105 to 131×105 CFU/g (20cm depth) and from 260×104 to 47×105 CFU/g (30cm depth). Fungal load varies from 124×103 to 27×104 CFU/g, from 61×103 to110×103 CFU/g and from 16×103 to 49×103 CFU/g at 10, 20 and 30 cm respectively. Actinomycetes count ranged from 129×103 to 60×104 CFU/g (10cm), from 70×103 to 31×104 CFU/g (20cm) and from 14×103 to 66×103 CFU/g (30cm). The study revealed that there was a significant difference in the depthwise distribution of microbial load and soil physico-chemical properties. Bacterial, fungal and actinomycetes load showed a decreasing trend with increasing depth at all the sites. Except pH all other physicochemical properties showed decreasing trend with increasing depth. The vertical profile of total microbial load was well matched with the depthwise profiles of soil nutrients and organic carbon that is microbial load was highest at the soil surface where organics and nutrients were highest

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrialization of our society has led to an increased production and discharge of both xenobiotic and natural chemical substances. Many of these chemicals will end up in the soil. Pollution of soils with heavy metals is becoming one of the most severe ecological and human health hazards. Elevated levels of heavy metals decrease soil microbial activity and bacteria need to develop different mechanisms to confer resistances to these heavy metals. Bacteria develop heavy-metal resistance mostly for their survivals, especially a significant portion of the resistant phenomena was found in the environmental strains. Therefore, in the present work, we check the multiple metal tolerance patterns of bacterial strains isolated from the soils of MG University campus, Kottayam. A total of 46 bacterial strains were isolated from different locations of the campus and tested for their resistant to 5 common metals in use (lead, zinc, copper, cadmium and nickel) by agar dilution method. The results of the present work revealed that there was a spatial variation of bacterial metal resistance in the soils of MG University campus, this may be due to the difference in metal contamination in different sampling location. All of the isolates showed resistance to one or more heavy metals selected. Tolerance to lead was relatively high followed by zinc, nickel, copper and cadmium. About 33% of the isolates showed very high tolerance (>4000μg/ml) to lead. Tolerance to cadmium (65%) was rather low (<100 μg/ml). Resistance to zinc was in between 100μg/ml - 1000μg/ml and the majority of them shows resistance in between 200μg/ml - 500μg/ml. Nickel resistance was in between 100μg/ml - 1000μg/ml and a good number of them shows resistance in between 300μg/ml - 400μg/ml. Resistance to copper was in between <100μg/ml - 500μg/ml and most of them showed resistance in between 300μg/ml - 400μg/ml. From the results of this study, it was concluded that heavy metal-resistant bacteria are widely distributed in the soils of MG university campus and the tolerance of heavy metals varied among bacteria and between locations