983 resultados para Soil Solution
Resumo:
As a seepage barrier slurry trench material should have a relatively low coefficient of permeability, in the range of 10(-7) cm/s, and at the same time should be compatible with surrounding material with regard to compressibility. Although bentonite-sand/soil mixes are used widely, there is no specific engineering approach to proportion these mixes that satisfies the above practical requirements. In this paper, a generalized approach is presented for predicting the permeability and compressibility characteristics of mixes with minimum input parameters. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. It is possible to proportion a mix to arrive at the required compressibility without affecting the permeability. This is explained using an illustrative example.
Resumo:
A novel solid solution in the system Bi-W-Cu-O has been synthesized and its structural and dielectric properties studied. The solid solution Bi2O3-(1-x)WO3-xCuO exists up to x = 0.7; the solid solutions up to x = 0.65 are orthorhombic but stabilize in tetragonal structure in a narrow range around x = 0.7. The solid solutions are non-centrosymmetric and exhibit ferroelectric behaviour similar to their parent phase Bi2WO6. The Curie point of the solid solution is found to decrease with increase in x.
Resumo:
The first hyperpolarizabilities (beta) of some weak aromatic organic acids have been measured in protic solvents by the hyper-Rayleigh scattering (HRS) technique at low concentrations. The measured hyperpolarizability (beta(m)) varies between the two extreme limits: the hyperpolarizability of the acid form (beta(HA)) at the lower side and that of the basic form (beta(A-)) at the higher side. The degree of dissociation (alpha) of the acid in a solvent is related to the measured hyperpolarizability, beta(m), by the following relationship: beta(m)(2)=(1-alpha)beta(HA)(2)+alpha beta(A-)(2). The calculated beta's including solvent effects in terms of an Onsager field do not reproduce the experimentally measured hyperpolarizabilities. Other solvent-induced effects like hydrogen bonding and van der Waals interactions seem to influence the first hyperpolarizability and, thus, indirectly the extent of dissociation of these weak acids in these protic solvents.
Resumo:
Abstract: The dynamics of poly(2-vinylpyridine) in chloroform solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed in terms of six motional models. Among these models, the models which consider conformational transitions and bond librations for the backbone were found to be more successful. Pyridyl ring motion has been modeled as a restricted rotation with the rotational amplitude varying with temperature. The activation energy parameters obtained from the relaxation data of the pyridyl ring carbon have been compared with the energy barrier for ring rotation estimated from conformational energy calculations using the AM1 semiempirical quantum chemical method. The results of the conformational energy calculations support the description of pyridyl ring motion as a restricted rotation.
Resumo:
The time evolution of colloidal gold particles in the nanometric regime has been investigated by employing electron microscopy and electronic absorption spectroscopy. The particle size distributions are essentially Gaussian and show the same time dependence for both the mean and the standard deviation, enabling us to obtain a time-independent universal curve for the particle size. Temperature dependent studies show the growth to be an activated process with a barrier of about 18 kJ mol(-1). We present a phenomenological equation for the evolution of particle size and suggest that the growth process is stochastic.
Resumo:
Abstract: Activities in the spinel solid solution FexMg1-xAl2O4 saturated with alpha-Al2O3 have been measured for the compositional range 0 < X < 1 between 1100 and 1350 K using a bielectrolyte solid-state galvanic cell, which may be represented as Pt, Fe + FexMg1-xAl2O4 + alpha-Al2O3//(Y2O3)ThO2/ (CaO)ZrO2//Fe + FeAl2O4 + alpha-Al2O3, Pt Activities of ferrous and magnesium aluminates exhibit small negative deviations from Raoult's law. The excess free energy of mixing of the solid solution is a symmetric function of composition and is independent of temperature: Delta G(E) = -1990 X(1 - X J/mol. Theoretical analysis of cation distribution in spinel solid solution also suggests mild negative deviations from ideality. The lattice parameter varies linearly with composition in samples quenched from 1300 K. Phase relations in the FeO-MgO-Al2O3 system at 1300 K are deduced from the results of this study and auxiliary thermodynamic data from the literature. The calculation demonstrates the influence of intracrystalline ion exchange equilibrium between nonequivalent crystallographic sites in the spinel structure on intercrystalline ion exchange equilibrium between the monoxide and spinel solid solutions (tie-lines). The composition dependence of oxygen partial pressure at 1300 K is evaluated for three-phase equilibria involving the solid solutions Fe + FexMg1-xAl2O4 + alpha-Al2O3 and Fe + FeyMg1-yO + FexMg1-xAl2O4. Dependence of X, denoting the composition of the spinel solid solution, on parameter Y, characterizing the composition of the monoxide solid solution with rock salt structure, in phase fields involving the two solid solutions is elucidated. The tie-lines are slightly skewed toward the MgAl2O4 corner.
Resumo:
This paper critically appraises the limitations of the liquid-limit water content of clayey soils determined conventionally either by percussion cup or by the cone penetration method. It is shown that the conventional liquid limit and plastic limit are arbitrary, strength-based water contents and that they cannot represent the plasticity limits, and that the state of the soil-water system at the conventional liquid limit does not correspond to a stress-free reference state. The present investigation identifies three characteristic limiting water contents for a soil-water system which have well-defined, unique mechanisms controlling them, namely the free swell limit, settling limit and shrinkage limit. Simple procedures for the determination of the free swell limit and settling limit of natural soils are presented. The settling limit is shown to be the 'real liquid limit' of any clayey soil. With a number of experimental illustrations, it is clearly shown that the settling limit represents the maximum water-holding capacity of clayey soils and that it corresponds to the stress-free reference state.
Resumo:
Activation of the B-H sigma-bond of amine-boranes on the chromium(0) center of arene chromium tricarbonyl complexes (eta(6)-arene) Cr(CO)(3) (arene = fluorobenzene, 1a; benzene, 1b and mesitylene, 1c) has been studied. Photolysis of 1b in presence of ammonia-borane (H3N center dot BH3, AB) and tert-butylamine-borane ((BuH2N)-Bu-t center dot BH3, TBAB) resulted in H-2 evolution and precipitation of a BNHx polymer. On the other hand, photolysis in the presence of trimethylamine-borane (Me3N center dot BH3, TMAB) resulted in the formation of a sigma-borane complex (2) along with Cr(CO)(5)(eta(1)-HBH2 center dot NMe3) (3). The sigma-borane complexes (eta(6)-arene) Cr-( CO)(2)(eta(1)-HBH2 center dot NMe3) (arene = fluorobenzene, 2a; benzene, 2b and mesitylene, 2c) were characterized in solution by H-1, B-11, and C-13 NMR spectroscopy. Electron withdrawing substituents on the arene ring provide the more stable sigma-borane moiety in this series of complexes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper examines the effect of substitution of water by heavy water in a polymer solution of polystyrene (molecular weight = 13000) and acetone. A critical double point (CDP), at which the upper and the lower partially-miscible regions merge, occurs at nearly the same coordinates as for the system [polystyrene + acetone + water]. The shape of the critical line for [polystyrene + acetone + heavy water] is highly asymmetric. An explanation for the occurrence of the water-induced CDP in [polystyrene + acetone] is advanced in terms of the interplay between contact energy dissimilarity and free-volume disparity of the polymer and the solvent. The question of the possible existence of a one-phase hole in an hourglass phase diagram is addressed in [polystyrene + acetone + water]. Our data exclude such a possibility.
Resumo:
The soil moisture characteristic (SMC) forms an important input to mathematical models of water and solute transport in the unsaturated-soil zone. Owing to their simplicity and ease of use, texture-based regression models are commonly used to estimate the SMC from basic soil properties. In this study, the performances of six such regression models were evaluated on three soils. Moisture characteristics generated by the regression models were statistically compared with the characteristics developed independently from laboratory and in-situ retention data of the soil profiles. Results of the statistical performance evaluation, while providing useful information on the errors involved in estimating the SMC, also highlighted the importance of the nature of the data set underlying the regression models. Among the models evaluated, the one possessing an underlying data set of in-situ measurements was found to be the best estimator of the in-situ SMC for all the soils. Considerable errors arose when a textural model based on laboratory data was used to estimate the field retention characteristics of unsaturated soils.
Resumo:
Geophysical methods are becoming more popular nowadays in the field of hydrology due to their time and space efficiency. So an attempt has been made here to relate electrical resistivity with soil moisture content in the field. The experiments were carried out in an experimental watershed `Mulehole' in southern India, which is a forested watershed with approximately 80% red soil. Five auger holes were drilled to perform the soil moisture and electrical resistivity measurements in a toposequence having red and black soils, with sandy weathered soil at the bottom. Soil moisture was measured using neutron probe and electrical resistivity was measured using electrical logging tool. The results indicate that electrical resistivity measurements can be used to measure soil moisture content for red soils only.
Resumo:
The unsteady laminar incompressible boundary layer flow of an electrically conducting fluid in the stagnation region of two-dimensional and axisymmetric bodies with an applied magnetic field has been studied. The boundary layer equations which are parabolic partial differential equations with three independent variables have been reduced to a system of ordinary differential equations by using suitable transformations and then solved numerically using a shooting method. Here, we have obtained new solutions which are solutions of both the boundary layer and Navier-Stokes equations.
Resumo:
A straightforward analysis involving the complex function-theoretic method is employed to determine the closed-form solution of a special hypersingular integral equation of the second kind, and its known solution is recovered.
Resumo:
A discussion of a technical note with the aforementioned title by Day and Marsh, published in this journal (Volume 121, Number 7, July 1995), is presented. Discussers Robinson and Allam assert that the authors' application of the pore-pressure parameter A to predict and quantify swell or collapse of compacted soils is hard to use because the authors visualize the collapse-swell phenomenon to occur in compacted soils broadly classified as sands and clays. The literature demonstrates that mineralogy has an important role in the volume change behavior of fine-grained soils. Robinson and Allam state that the A-value measurements may not completely predict the type of volume change anticipated in compacted soils on soaking without soil clay mineralogy details. Discussion is followed by closure from the authors.
Resumo:
Maleic anhydride (MAH) has been grafted onto high density polyethylene (HDPE) with benzoyl peroxide (BOP) initiator in toluene solution. Maximum degree of grafting (12%) without crosslinking has been obtained using MAH/HDPE and BOP/HDPE weight ratios of 1.0 and 0.15 respectively, at 110 degrees C. The HDPE-g-MAH compatibilizer is found to drastically reduce the dispersed phase size and also to produce homogeneous blends for relatively low concentrations of dispersed phase in HDPE/nylon blends. Addition of this compatibilizer results in increase of tensile strength and modulus with increasing nylon content of HDPE/nylon blends, while the opposite is found for the blends without any added compatibilizer.