880 resultados para Small-sized hospitals
Resumo:
Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.
Resumo:
To obtain accurate Monte Carlo simulations of small radiation fields, it is important model the initial source parameters (electron energy and spot size) accurately. However recent studies have shown that small field dosimetry correction factors are insensitive to these parameters. The aim of this work is to extend this concept to test if these parameters affect dose perturbations in general, which is important for detector design and calculating perturbation correction factors. The EGSnrc C++ user code cavity was used for all simulations. Varying amounts of air between 0 and 2 mm were deliberately introduced upstream to a diode and the dose perturbation caused by the air was quantified. These simulations were then repeated using a range of initial electron energies (5.5 to 7.0 MeV) and electron spot sizes (0.7 to 2.2 FWHM). The resultant dose perturbations were large. For example 2 mm of air caused a dose reduction of up to 31% when simulated with a 6 mm field size. However these values did not vary by more than 2 % when simulated across the full range of source parameters tested. If a detector is modified by the introduction of air, one can be confident that the response of the detector will be the same across all similar linear accelerators and the Monte Carlo modelling of each machine is not required.
Resumo:
This PhD research investigates the critical resources and Internet capabilities utilized by firms for leveraging global performance in entrepreneurial firms. Firm resources have been identified as important firm assets, which contribute to the firm's competitive global position. The Internet is a critical resource for a new generation of small and medium sized enterprise (SME) in pursuing international opportunities. By facilitating international business, the Internet has the ability to increase the quality and speed of communications, lower transaction costs, and facilitate the development of networks. Despite the increasing numbers of firms utilizing the Internet to pursue international opportunities, limited research remains. Adopting multiple case study methodology and structural equation modelling, the research identified the firm-level resources, which coincide with capabilities in a model predicting how international performance in firms is achieved.
Resumo:
Review of Elizabeth Grosz’s Chaos, Territory, Art: Deleuze and the Framing of the Earth
Resumo:
In recent years, the imperative to communicate organisational impacts to a variety of stakeholders has gained increasing importance within all sectors. Despite growing external demands for evaluation and social impact measurement, there has been limited critically informed analysis about the presumed importance of these activities to organisational success and the practical challenges faced by organisations in undertaking such assessment. In this paper, we present the findings from an action research study of five Australian small to medium social enterprises’ practices and use of evaluation and social impact analysis. Our findings have implications for social enterprise operators, policy makers and social investors regarding when, why and at what level these activities contribute to organisational performance and the fulfilment of mission.
Resumo:
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.
Resumo:
We recently developed a binding assay format by incorporating native transmembrane receptors into artificial phospholipid bilayers on biosensor devices for surface plasmon resonance spectroscopy. By extending the method to surface plasmon-enhanced fluorescence spectroscopy (SPFS), sensitive recording of the association of even very small ligands is enabled. Herewith, we monitored binding of synthetic mono- and oligomeric RGD-based peptides and peptidomimetics to integrins alphavbeta3 and alphavbeta5, after having confirmed correct orientation and functionality of membrane-embedded integrins. We evaluated integrin binding of RGD multimers linked together via aminohexanoic acid (Ahx) spacers and showed that the dimer revealed higher binding activity than the tetramer, followed by the RGD monomers. The peptidomimetic was also found to be highly active with a slightly higher selectivity toward alphavbeta3. The different compounds were also evaluated in in vitro cell adhesion tests for their capacity to interfere with alphavbeta3-mediated cell attachment to vitronectin. We hereby demonstrated that the different RGD monomers were similarly effective; the RGD dimer and tetramer showed comparable IC50 values, which were, however, significantly higher than those of the monomers. Best cell detachment from vitronectin was achieved by the peptidomimetic. The novel SPFS-binding assay platform proves to be a suitable, reliable, and sensitive method to monitor the binding capacity of small ligands to native transmembrane receptors, here demonstrated for integrins.
Resumo:
The importance of repair, maintenance, minor alteration, and addition (RMAA) works is increasing in many built societies. When the volume of RMAA works increases, the occurrence of RMAA accidents also increases. Safety of RMAA works deserves more attention; however, research in this important topic remains limited. Safety climate is considered a key factor that influences safety performance. The present study aims to determine the relationships between safety climate and safety performance of RMAA works, thereby offering recommendations on improving RMAA safety. Questionnaires were dispatched to private property management companies, maintenance sections of quasi-government developers and their subcontractors, RMAA sections of general contractors, small RMAA contractors, building services contractors and trade unions in Hong Kong. In total, data from 396 questionnaires were collected from RMAA workers. The sample was divided into two equal-sized sub-samples. On the first sub-sample SEM was used to test the model, which was validated on the second sub-sample. The model revealed a significant negative relationship between RMAA safety climate and incidence of self-reported near misses and injuries, and significant positive relationships between RMAA safety climate and safety participation and safety compliance respectively. Higher RMAA safety climate was positively associated with a lower incidence of self-reported near misses and injuries and higher levels of safety participation and safety compliance.
Resumo:
The concept of cloud computing services is appealing to the small and medium enterprises (SMEs), with the opportunity to acquire modern information technology resources as a utility and avoid costly capital investments in technology resources. However, the adoption of the cloud computing services presents significant challenges to the SMEs. The SMEs need to determine a path to adopting the cloud computing services that would ensure their sustainable presence in the cloud computing environment. Information about approaches to adopting the cloud computing services by the SMEs is fragmented. Through an interpretive design, we suggest that the SMEs need to have a strategic and incremental intent, understand their organizational structure, understand the external factors, consider the human resource capacity, and understand the value expectations from the cloud computing services to forge a successful path to adopting the cloud computing services. These factors would contribute to a model of cloud services for SMEs.
Resumo:
A salient but rarely explicitly studied characteristic of interfirm relationships is that they can intentionally be formed for finite periods of time. What determines firms' intertemporal choices between different alliance time horizons? Shadow of the future theorists suggest that when an alliance has an explicitly set short-term time frame, there is an increased risk that partners may behave opportunistically. This does not readily explain the high incidence of time-bound alliances being formed. Reconciling insights from the shadow of the future perspective with nascent research on the flexibility of temporary organizations, and shifting the focus from the level of individual transactions to that of strategic alliance portfolios, we argue that firms may be willing to accept a higher risk of opportunism when there are offsetting gains in strategic flexibility in managing their strategic alliance portfolio. Consequently, we hypothesize that environmental factors that increase the need for strategic flexibility—namely, dynamism and complexity in the environment—are likely to increase the relative share of time-bound alliances in strategic alliance portfolios. Our analysis of longitudinal data on the intertemporal alliance choices of a large sample of small and medium-sized enterprises provides support for this argument. Our findings fill an important gap in theory about time horizons in interfirm relationships and temporary organizations and show the importance of separating planned terminations from duration-based performance measures.