946 resultados para Sludge toxicity
Resumo:
"ILENR/AE-92/02."
Resumo:
"Contract: EA99"
Resumo:
"SWS Contract report 429." -- Cover.
Resumo:
Cover title.
Resumo:
Includes bibliographical references (p. 54-59).
Resumo:
"April, 1913."
Resumo:
Mode of access: Internet.
Resumo:
The toxicity of aluminium (Al) to fish in acidic waters has been well documented. It was therefore expected that Al toxicity would be significant in fish communities in Gadjarrigamarndah (Gadji) Creek, a seasonally flowing stream in tropical northern Australia. This creek receives acidic groundwater containing elevated concentrations of Al from earlier land irrigation of treated mine tailings water from the former Nabarlek uranium mine. It was hypothesised that Al toxicity was reduced by high levels of silica (Si) in the water, and the subsequent formation of Al-silicate complexes. This prompted a laboratory assessment of the toxicity of Gadji Creek water to sac-fry of the native fish, Mogurnda mogurnda, followed by more detailed investigation of the toxicity of Al and the influence of Si in reducing Al toxicity. No mortality of M. mogurnda sac-fry was observed in two toxicity tests using Gadji Creek water collected in August 1997 and September 1998. The majority of Al (80-95%) was calculated to be complexed with humic substances and sulfate, with <1% being complexed with silicate. Assessment of the influence of silica on the acute toxicity of Al in the absence of natural organic complexants (i.e. in reconstituted freshwater, pH 5) revealed that Si reduced Al toxicity. As the molar ratio of Si:Al was increased, the percent survival of M. mogurnda sac-fry increased until there was no significant (P > 0.05) difference from the controls. However, speciation modelling again predicted that little (<3%) Al complexed with silicate, with the speciation and bioavailability of Al remaining constant as the molar ratio of Si:Al increased. Therefore, the original hypothesis that Al-silicate complexes in solution reduced the toxicity of Al to M. mogurnda could not be supported. This potential mechanism, and an alternative hypothesis, that Si competes with Al for binding sites at the fish gill surface, requires further investigation. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The aim of this paper is to investigate the effect of shear history on activated sludge flocculation dynamics and to model the observed relationships using population balances. Activated sludge flocs are exposed to dramatic changes in the shear rate within the treatment process, as they pass through localised high and low mixing intensities within the aeration basin and are cycled through the different unit operations of the treatment process. We will show that shear history is a key factor in determining floc size, and that the floc size varies irreversibly with changes in shear rate. A population balance model of the flocculation process is also introduced and evaluated.
Resumo:
Since the implementation of the activated sludge process for treating wastewater, there has been a reliance on chemical and physical parameters to monitor the system. However, in biological nutrient removal (BNR) processes, the microorganisms responsible for some of the transformations should be used to monitor the processes with the overall goal to achieve better treatment performance. The development of in situ identification and rapid quantification techniques for key microorganisms involved in BNR are required to achieve this goal. This study explored the quantification of Nitrospira, a key organism in the oxidation of nitrite to nitrate in BNR. Two molecular genetic microbial quantification techniques were evaluated: real-time polymerase chain reaction (PCR) and fluorescence in situ hybridisation (FISH) followed by digital image analysis. A correlation between the Nitrospira quantitative data and the nitrate production rate, determined in batch tests, was attempted. The disadvantages and advantages of both methods will be discussed.
Resumo:
The sheathed filamentous bacterium known as strain CT3, isolated by micromanipulation from an activated sludge treatment plant in Italy, is a member of the genus Thiothrix in the gamma-Proteobacteria according to 16S rDNA sequence analysis. The closest phylogenetic neighbours of strain CT3 are strains I and Q(T), which were also isolated from activated sludge and belong to the species Thiothrix fructosivorans. These strains have respectively 99.2 and 99.4 % similarity to CT3 by 16S rDNA sequence comparison. CT3 shows 63-67 % DNA-DNA hybridization with strain I, which is the only currently viable strain of T. fructosivorans. CT3 is the second strain in the genus Thiothrix that has been shown to be capable of growing autotrophically with reduced sulfur compounds as the sole energy source; autotrophy was also confirmed in strain I. The first reported chemolithoautotrophic isolate of this genus was a strain of 'Thiothrix ramosa' that was isolated from a hydrogen sulfide spring and is morphologically distinguishable from all other described strains of Thiothrix, including CT3. CT3 is an aerobic organism that is non-fermentative, not capable of denitrification and able to grow heterotrophically. Autotrophy in the genus Thiothrix should be investigated more fully to better define the taxonomy of this genus.
Resumo:
Hungry cattle and sheep introduced to stockyards containing a dominant or pure growth of Dactyloctenium radulans (button grass) suffered acute nitrate-nitrite toxicity in four incidents in inland Queensland between 1993 and 2001. Deaths ranged from 16 to 44%. Methaemoglobinaemia was noted at necropsies in all incidents. An aqueous humour sample from one dead steer contained 75 mg nitrate/L and from one dead sheep contained 100 mg nitrate and 50 mg nitrite/L (normal = ca 5 mg nitrate/L). Both lush and dry button grass were toxic. The nitrate content of button grass from within the stockyards ranged from 4.0 to 12.9% as potassium nitrate equivalent in dry matter and from outside the stockyards ranged from