998 resultados para Skin Modelling
Resumo:
The goal of the single building information model has existed for at least thirty years and various standards have been published leading up to the ten-year development of the Industry Foundation Classes. These have been initiatives from researchers, software developers and standards committees. Now large property owners are becoming aware of the benefits of moving IT tools from specific applications towards more comprehensive solutions. This study addresses the state of Building Information Models and the conditions necessary for them to become more widely used. It is a qualitative study based on information from a number of international experts and has asked a series of questions about the feasibility of BIMs, the conditions necessary for their success, and the role of standards with particular reference to the IFCs. Some key statements were distilled from the diverse answers received and indicate that BIM solutions appear too complex for many and may need to be applied in limited areas initially. Standards are generally supported but not applied rigorously and a range of these are relevant to BIM. Benefits will depend upon the building procurement methods used and there should be special roles within the project team to manage information. Case studies are starting to appear and these could be used for publicity. The IFCs are rather oversold and their complexities should be hidden within simple-to-use software. Inevitably major questions remain and property owners may be the key to answering some of these. A framework for presenting standards, backed up by case studies of successful projects, is the solution proposed to provide better information on where particular BIM standards and solutions should be applied in building projects.
Resumo:
Recently, focus of real estate investment has expanded from the building-specific level to the aggregate portfolio level. The portfolio perspective requires investment analysis for real estate which is comparable with that of other asset classes, such as stocks and bonds. Thus, despite its distinctive features, such as heterogeneity, high unit value, illiquidity and the use of valuations to measure performance, real estate should not be considered in isolation. This means that techniques which are widely used for other assets classes can also be applied to real estate. An important part of investment strategies which support decisions on multi-asset portfolios is identifying the fundamentals of movements in property rents and returns, and predicting them on the basis of these fundamentals. The main objective of this thesis is to find the key drivers and the best methods for modelling and forecasting property rents and returns in markets which have experienced structural changes. The Finnish property market, which is a small European market with structural changes and limited property data, is used as a case study. The findings in the thesis show that is it possible to use modern econometric tools for modelling and forecasting property markets. The thesis consists of an introduction part and four essays. Essays 1 and 3 model Helsinki office rents and returns, and assess the suitability of alternative techniques for forecasting these series. Simple time series techniques are able to account for structural changes in the way markets operate, and thus provide the best forecasting tool. Theory-based econometric models, in particular error correction models, which are constrained by long-run information, are better for explaining past movements in rents and returns than for predicting their future movements. Essay 2 proceeds by examining the key drivers of rent movements for several property types in a number of Finnish property markets. The essay shows that commercial rents in local markets can be modelled using national macroeconomic variables and a panel approach. Finally, Essay 4 investigates whether forecasting models can be improved by accounting for asymmetric responses of office returns to the business cycle. The essay finds that the forecast performance of time series models can be improved by introducing asymmetries, and the improvement is sufficient to justify the extra computational time and effort associated with the application of these techniques.
Resumo:
The purpose of this paper is to test for the effect of uncertainty in a model of real estate investment in Finland during the hihhly cyclical period of 1975 to 1998. We use two alternative measures of uncertainty. The first measure is the volatility of stock market returns and the second measure is the heterogeneity in the answers of the quarterly business survey of the Confederation of Finnish Industry and Employers. The econometric analysis is based on the autoregressive distributed lag (ADL) model and the paper applies a 'general-to-specific' modelling approach. We find that the measure of heterogeneity is significant in the model, but the volatility of stock market returns is not. The empirical results give some evidence of an uncertainty-induced threshold slowing down real estate investment in Finland.
Resumo:
The modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein (ABP) have been studied by energy minimization using the low resolution (2.4 A) X-ray data of the protein. These studies suggest that these sugars preferentially bind in the alpha-form to ABP, unlike L-arabinose where both alpha- and beta-anomers bind almost equally. The best modes of binding of alpha- and beta-anomers of D-galactose and D-fucose differ slightly in the nature of the possible hydrogen bonds with the protein. The residues Arg 151 and Asn 232 of ABP from bidentate hydrogen bonds with both L-arabinose and D-galactose, but not with D-fucose or D-glucose. However in the case of L-arabinose, Arg 151 forms hydrogen bonds with the hydroxyl group at the C-4 atom and the ring oxygen, whereas in case of D-galactose it forms bonds with the hydroxyl groups at the C-4 and C-6 atoms of the pyranose ring. The calculated conformational energies also predict that D-galactose is a better inhibitor than D-fucose and D-glucose, in agreement with kinetic studies. The weak inhibitor D-glucose binds preferentially to one domain of ABP leading to the formation of a weaker complex. Thus these studies provide information about the most probable binding modes of these sugars and also provide a theoretical explanation for the observed differences in their binding affinities.
Resumo:
Yhteenveto: Laajan merialueen dynamiikan mallintaminen
Resumo:
Void breaking and formation in a packed bed are important phenomena in stabilising and optimising the performance of reactors such as the blast furnace, spouted bed and catalytic regenerator. These phenomena have been studied using a mathematical model. The model is based on a previously published force balance approach to predict the cavity size. Limited numbers of experiments, at room temperature, have been carried out in order to compare the experimental results with theory. A good agreement has been found between the experimental and theoretical results. In addition, the predictions have been compared with published data, which give reasonable agreement. The role of various forces (friction, pressure and bed weight) on void initiation and breaking has been investigated. The effect of bed height, particle diameter and density, void fraction, as well as gas flow rate on void formation and breaking has also been studied.
Resumo:
A higher-order theory of laminated composites under in-plane loads is developed. The displacement field is expanded in terms of the thickness co-ordinate, satisfying the zero shear stress condition at the surfaces of the laminate. Using the principle of virtual displacement, the governing equations and boundary conditions are established. Numerical results for interlaminar stresses arising in the case of symmetric laminates under uniform extension have been obtained and are compared with similar results available in the literature.
Resumo:
We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A sensitive framework has been developed for modelling young radiata pine survival, its growth and its size class distribution, from time of planting to age 5 or 6 years. The data and analysis refer to the Central North Island region of New Zealand. The survival function is derived from a Weibull probability density function, to reflect diminishing mortality with the passage of time in young stands. An anamorphic family of trends was used, as very little between-tree competition can be expected in young stands. An exponential height function was found to fit best the lower portion of its sigmoid form. The most appropriate basal area/ha exponential function included an allometric adjustment which resulted in compatible mean height and basal area/ha models. Each of these equations successfully represented the effects of several establishment practices by making coefficients linear functions of site factors, management activities and their interactions. Height and diameter distribution modelling techniques that ensured compatibility with stand values were employed to represent the effects of management practices on crop variation. Model parameters for this research were estimated using data from site preparation experiments in the region and were tested with some independent data sets.
Resumo:
X-ray synchrotron radiation was used to study the nanostructure of cellulose in Norway spruce stem wood and powders of cobalt nanoparticles in cellulose support. Furthermore, the growth of metallic clusters was modelled and simulated in the mesoscopic size scale. Norway spruce was characterized with x-ray microanalysis at beamline ID18F of the European Synchrotron Radiation Facility in Grenoble. The average dimensions and the orientation of cellulose crystallites was determined using x-ray microdiffraction. In addition, the nutrient element content was determined using x-ray fluorescence spectroscopy. Diffraction patterns and fluorescence spectra were simultaneously acquired. Cobalt nanoparticles in cellulose support were characterized with x-ray absorption spectroscopy at beamline X1 of the Deutsches Elektronen-Synchrotron in Hamburg, complemented by home lab experiments including x-ray diffraction, electron microscopy and measurement of magnetic properties with a vibrating sample magnetometer. Extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray diffraction were used to solve the atomic arrangement of the cobalt nanoparticles. Scanning- and transmission electron microscopy were used to image the surfaces of the cellulose fibrils, where the growth of nanoparticles takes place. The EXAFS experiment was complemented by computational coordination number calculations on ideal spherical nanocrystals. The growth process of metallic nanoclusters on cellulose matrix is assumed to be rather complicated, affected not only by the properties of the clusters themselves, but essentially depending on the cluster-fiber interfaces as well as the morphology of the fiber surfaces. The final favored average size for nanoclusters, if such exists, is most probably a consequence of these two competing tendencies towards size selection, one governed by pore sizes, the other by the cluster properties. In this thesis, a mesoscopic model for the growth of metallic nanoclusters on porous cellulose fiber (or inorganic) surfaces is developed. The first step in modelling was to evaluate the special case of how the growth proceeds on flat or wedged surfaces.
Resumo:
The mechanism of action of ribonuclease (RNase) T1 is still a matter of considerable debate as the results of x-ray, 2-D nmr and site-directed mutagenesis studies disagree regarding the role of the catalytically important residues. Hence computer modelling studies were carried out by energy minimisation of the complexes of RNase T1 and some of its mutants (His40Ala, His40Lys, and Glu58Ala) with the substrate guanyl cytosine (GpC), and of native RNase T1 with the reaction intermediate guanosine 2',3'-cyclic phosphate (G greater than p). The puckering of the guanosine ribose moiety in the minimum energy conformer of the RNase T1-GpC (substrate) complex was found to be O4'-endo and not C3'-endo as in the RNase T1-3'-guanylic acid (inhibitor/product) complex. A possible scheme for the mechanism of action of RNase T1 has been proposed on the basis of the arrangement of the catalytically important amino acid residues His40, Glu58, Arg77, and His92 around the guanosine ribose and the phosphate moiety in the RNase T1-GpC and RNase T1-G greater than p complexes. In this scheme, Glu58 serves as the general base group and His92 as the general acid group in the transphosphorylation step. His40 may be essential for stabilising the negatively charged phosphate moiety in the enzyme-transition state complex.
Resumo:
This paper deals with the two-dimensional electric field modelling and electric field stress calculations of different types of composite insulators used in high voltage distribution and transmission systems. The computer simulations are carried out by using a commercially available software package. The potential and electric filed results obtained for the actual insulator profiles for three types of composite/polymeric insulators are discussed and presented.
Resumo:
One of the most important factors that affect the pointing of precision payloads and devices in space platforms is the vibration generated due to static and dynamic unbalanced forces of rotary equipments placed in the neighborhood of payload. Generally, such disturbances are of low amplitude, less than 1 kHz, and are termed as ‘micro-vibrations’. Due to low damping in the space structure, these vibrations have long decay time and they degrade the performance of payload. This paper addresses the design, modeling and analysis of a low frequency space frame platform for passive and active attenuation of micro-vibrations. This flexible platform has been designed to act as a mount for devices like reaction wheels, and consists of four folded continuous beams arranged in three dimensions. Frequency and response analysis have been carried out by varying the number of folds, and thickness of vertical beam. Results show that lower frequencies can be achieved by increasing the number of folds and by decreasing the thickness of the blade. In addition, active vibration control is studied by incorporating piezoelectric actuators and sensors in the dynamic model. It is shown using simulation that a control strategy using optimal control is effective for vibration suppression under a wide variety of loading conditions.