973 resultados para Silicon oxide substrates
Resumo:
Fire resistance of light-gauge steel frame (LSF) walls can be enhanced by lining them with single or multiple layers of wall boards. This research is focused on the thermal per-formance of Magnesium Oxide (MgO) wall boards in comparison to the conventional gypsum plasterboards exposed to standard fire on one side. Thermal properties of MgO board and gypsum plasterboard were measured first and then used in the finite element heat transfer models of the two types of panels. The measured thermal property results show that MgO board will perform better than the gypsum plasterboards due to its higher specific heat values at elevated temperatures. However, MgO board loses 50% of its ini-tial mass at about 500 °C compared to 16% for gypsum plasterboard. The developed finite element models were validated using the fire test results of gypsum plasterboards and then used to study the thermal performance of MgO board panels. Finite element analysis re-sults show that when MgO board panels are exposed to standard fire on one side the rate of temperature rise on the ambient side is significantly reduced compared to gypsum plas-terboard. This has the potential to improve the overall thermal performance of MgO board lined LSF walls and their fire resistance levels (FRL). However, full scale fire tests are needed to confirm this. This paper presents the details of this investigation and the results.
Resumo:
Abstract is not available.
Resumo:
ZnO nanoneedles were successfully deposited on flexible polymer substrates at room temperature by activated reactive evaporation. Neither a catalyst nor a template was employed in this synthesis. These synthesized needles measured 500 - 600 nm in length and its diameter varied from 30 - 15 nm from the base to the tip. The single-crystalline nature of the nanoneedle was observed by high-resolution transmission electron microscopy studies. The Raman studies on these nanoneedles had shown that they are oxygen deficient in nature. A possible growth mechanism has been proposed here, in which the nanoneedles nucleate and grow in the gas phase by vapor-solid mechanism.
Role of silicon in resisting subsurface plastic deformation in tribology of aluminium-silicon alloys
Resumo:
Silicon particles standing proud on aluminium-silicon alloy surfaces provide protection in tribology. Permanent sinking of such particles into the matrix under load can be deleterious. The mechanical response of the alloy to nano-indentation of single silicon particles embedded in the matrix is explored. A nominal critical pressure required to plastically deform the matrix to permanently embed the particle is determined experimentally. Within a framework suggested by two-dimensional models of plastic response to indentation, a probable correlation is established between the normal mean pressure required to cause permanent sinking of silicon particles and a factor which relates the relevant particle dimensions.
Resumo:
The formation of heterojunctions between two crystals with different band gap structures, acting as a tunnel for the unidirectional transfer of photo-generated charges, is an efficient strategy to enhance photocatalytic performance in semiconductor photocatalysts. The heterojunctions may also promote the photoactivity in the visible-light-response of any surface complex catalysts by influencing the transfer of photo-generated electrons. Herein, Nb2O5 microfibers, with a high surface area of interfaces between an amorphous phase and crystalline phase, were designed and synthesised by the calcination of hydrogen-form niobate while controlling the crystallization The photoactivity of these microfibers towards selective aerobic oxidation reactions was investigated. As predicted, the Nb2O5 microfibres containing heterojunctions exhibited the highest photoactivity. This could be due to the band gap difference between the amorphous phase and the crystalline phase, which shortened the charge mobile distance and improved the efficiency.
Resumo:
Measurement of fractional exhaled nitric oxide (FENO) has proven useful in assessment of patients with respiratory symptoms, especially in predicting steroid response. The objective of these studies was to clarify issues relevant for the clinical use of FENO. The influence of allergic sensitization per se on FENO in healthy asymptomatic subjects was studied, the association between airway inflammation and bronchial hyperresponsiveness (BHR) in steroid-naive subjects with symptoms suggesting asthma was examined, as well as the possible difference in this association between atopic and nonatopic subjects. Influence of smoking on FENO was compared between atopic and nonatopic steroid-naive asthmatics and healthy subjects. The short-term repeatability of FENO in COPD patients was examined in order to assess whether the degree of chronic obstruction influences the repeatability. For these purposes, we studied a random sample of 248 citizens of Helsinki, 227 army conscripts with current symptoms suggesting asthma, 19 COPD patients, and 39 healthy subjects. FENO measurement, spirometry and bronchodilatation test, structured interview. skin prick tests, and histamine and exercise challenges were performed. Among healthy subjects with no signs of airway diseases, median FENO was similar in skin prick test-positive and –negative subjects, and the upper normal limit of FENO was 30 ppb. In atopic and nonatopic subjects with symptoms suggesting asthma, FENO associated with severity of exercise- or histamine-induced BHR only in atopic patients. FENO in smokers with steroid-naive asthma was significantly higher than in healthy smokers and nonsmokers. Among atopic asthmatics, FENO was significantly lower in smokers than in nonsmokers, whereas no difference appeared among nonatopic asthmatics. The 24-h repeatability of FENO was equally good in COPD patients as in healthy subjects. These findings indicate that allergic sensitization per se does not influence FENO, supporting the view that elevated FENO indicates NO-producing airway inflammation, and that same reference range can be applied to both skin prick test-positive and -negative subjects. The significant correlation between FENO and degree of BHR only in atopic steroid-naive subjects with current asthmatic symptoms supports the view that pathogenesis of BHR in atopic asthma is strongly involved in NO-producing airway inflammation, whereas in development of BHR in nonatopic asthma other mechanisms may dominate. Attenuation of FENO only in atopic but not in nonatopic smokers with steroid-naive asthma may result from differences in mechanisms of FENO formation as well as in sensitivity of these mechanisms to smoking in atopic and nonatopic asthma. The results suggest, however, that in young adult smokers, FENO measurement may prove useful in assessment of airway inflammation. The short-term repeatability of FENO in COPD patients with moderate to very severe disease and in healthy subjects was equally good.
Resumo:
In the present work we report a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant (cationic, anionic, non ionic and polymeric), without the use of any templates. The method is simple, inexpensive, and helps one to prepare nanostructures in quick time, measured in seconds and minutes. This method has been applied successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with changes in different process parameters, such as microwave power, irradiation time, identity of solvent, type of surfactant, and its concentration.
Resumo:
Inducible nitric oxide synthase (iNOS) has important functions in innate immunity and regulation of immune functions. Here, the role of iNOS in the pathogenesis of various intracellular bacterial infections is discussed. These pathogens have also evolved a broad array of strategies to repair damage by reactive nitrogen intermediates, and to suppress or inhibit functions of iNOS.
Resumo:
Pathogenic mycobacteria have evolved unique strategies to survive within the hostile environment of macrophages. Modulation of key signaling cascades by NO, generated by the host during infection, assumes critical importance in overall cell-fate decisions. We show that NO is a critical factor in Mycobacterium bovis bacillus Calmette-Guérin-mediated Notch1 activation, as the generation of activated Notch1 or expression of Notch1 target genes matrix metalloproteinase-9 (MMP-9) or Hes1 was abrogated in macrophages derived from inducible NO synthase (iNOS) knockout (iNOS(-/-)), but not from wild-type, mice. Interestingly, expression of the Notch1 ligand Jagged1 was compromised in M. bovis bacillus Calmette-Guérin-stimulated iNOS(-/-) macrophages, and loss of Jagged1 expression or Notch1 signaling could be rescued by NO donors. Signaling perturbations or genetic approaches implicated that robust expression of MMP-9 or Hes1 required synergy and cross talk between TLR2 and canonical Notch1-PI3K cascade. Further, CSL/RBP-Jk contributed to TLR2-mediated expression of MMP-9 or Hes1. Correlative evidence shows that, in a murine model for CNS tuberculosis, this mechanism operates in vivo only in brains derived from WT but not from iNOS(-/-) mice. Importantly, we demonstrate the activation of Notch1 signaling in vivo in granulomatous lesions in the brains of Mycobacterium tuberculosis-infected human patients with tuberculous meningitis. Current investigation identifies NO as a pathological link that modulates direct cooperation of TLR2 with Notch1-PI3K signaling or Jagged1 to regulate specific components of TLR2 responses. These findings provide new insights into mechanisms by which Notch1, TLR2, and NO signals are integrated in a cross talk that modulates a defined set of effector functions in macrophages.
Resumo:
Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically strong qualities, and the two internal void spaces can confine and accommodate volume expansion of silicon during lithiation. Therefore, these specially designed dual yolk-shell structures exhibit a stable and high capacity of 956 mA h g−1 after 430 cycles with capacity retention of 83%, while the capacity of Si/C core-shell structures rapidly decreases in the first ten cycles under the same experimental conditions. The novel dual yolk-shell structures developed for Si can also be extended to other battery materials that undergo large volume changes.
Resumo:
The main obstacle for the application of high quality diamond-like carbon (DLC) coatings has been the lack of adhesion to the substrate as the coating thickness is increased. The aim of this study was to improve the filtered pulsed arc discharge (FPAD) method. With this method it is possible to achieve high DLC coating thicknesses necessary for practical applications. The energy of the carbon ions was measured with an optoelectronic time-of-flight method. An in situ cathode polishing system used for stabilizing the process yield and the carbon ion energies is presented. Simultaneously the quality of the coatings can be controlled. To optimise the quality of the deposition process a simple, fast and inexpensive method using silicon wafers as test substrates was developed. This method was used for evaluating the suitability of a simplified arc-discharge set-up for the deposition of the adhesion layer of DLC coatings. A whole new group of materials discovered by our research group, the diamond-like carbon polymer hybrid (DLC-p-h) coatings, is also presented. The parent polymers used in these novel coatings were polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE). The energy of the plasma ions was found to increase when the anode-cathode distance and the arc voltage were increased. A constant deposition rate for continuous coating runs was obtained with an in situ cathode polishing system. The novel DLC-p-h coatings were found to be water and oil repellent and harder than any polymers. The lowest sliding angle ever measured from a solid surface, 0.15 ± 0.03°, was measured on a DLC-PDMS-h coating. In the FPAD system carbon ions can be accelerated to high energies (≈ 1 keV) necessary for the optimal adhesion (the substrate is broken in the adhesion and quality test) of ultra thick (up to 200 µm) DLC coatings by increasing the anode-cathode distance and using high voltages (up to 4 kV). An excellent adhesion can also be obtained with the simplified arc-discharge device. To maintain high process yield (5µm/h over a surface area of 150 cm2) and to stabilize the carbon ion energies and the high quality (sp3 fraction up to 85%) of the resulting coating, an in situ cathode polishing system must be used. DLC-PDMS-h coating is the superior candidate coating material for anti-soiling applications where also hardness is required.
Resumo:
Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.
Resumo:
A theoretical model is proposed to determine the effects of Si substitution with Al on the oxygen diffusion in apatite-type lanthanum silicates based on density-functional theory (DFT) calculations for La10(SiO 4)4(AlO4)2O2. Substitution changes the stable configuration for excess oxygen from the split interstitial to a new cluster form with the original cluster. Al doping completely changes the migration mechanism from the interstitialcy one, which was proposed for the La9.33(SiO4)6O2 starting material, to a mechanism which contains an interstitial process. Nevertheless, the migration barrier is calculated to be 0.81 eV, which indicates small changes in oxygen conduction and is consistent with the observations. The present study indicates that the cation substitution on silicon site alone does not promise the improvement of the oxide ion conduction in the lanthanum silicate.
Resumo:
An amorphous silicon carbonitride (Si1-x-yCxN y, x = 0:43, y = 0:31) coating was deposited on polyimide substrate using the magnetron-sputtering method. Exposure tests of the coated polyimide in atomic oxygen beam and vacuum ultraviolet radiation were performed in a ground-based simulator. Erosion kinetics measurements indicated that the erosion yield of the Si0.26C0.43N0.31 coating was about 1.5x and 1.8 × 10-26 cm3 /atom during exposure in single atomic oxygen beam, simultaneous atomic oxygen beam, and vacuum ultraviolet radiation, respectively. These values were 2 orders of magnitude lower than that of bare polyimide substrate. Scanning electron and atomic force microscopy, X-ray photoelectron spectrometer, and Fourier transformed infrared spectroscopy investigation indicated that during exposures, an oxide-rich layer composed of SiO2 and minor Si-C-O formed on the surface of the Si 0.26C0.43N0.31 coating, which was the main reason for the excellent resistance to the attacks of atomic oxygen. Moreover, vacuum ultraviolet radiation could promote the breakage of chemical bonds with low binding energy, such as C-N, C = N, and C-C, and enhance atomic oxygen erosion rate slightly.