882 resultados para Silica on YIG ferrite
Accumulation rates of sediments and main sedimentary components in ODP Leg 121 holes on Broken Ridge
Resumo:
Broken Ridge, in the eastern Indian Ocean,is overlain by about 1600 m of middle Cretaceous to Pleistocene tuffaceous and carbonate sediments that record the oceanographic history of southern hemisphere mid-to high-latitude regions. Prior to about 42 Ma, Broken Ridge formed the northern part of the broad Kerguelen-Broken Ridge Plateau. During the middle Eocene, this feature was split by the newly forming Southeast Indian Ocean Ridge; since then, Broken Ridge has drifted north from about 55° to 31°S. The lower part of the sedimentary section is characterized by Turonian to Santonian tuffs that contain abundant glauconite and some carbonate. The tuffs record a large but apparently local volcanic input that characterized the central part of Broken Ridge into the early Tertiary. Maestrichtian shallow-water(several hundred to 1000 m depth) limestones and cherts accumulated at some of the highest rates ever documented from the open ocean, 4 to 5 g/cm**2/kyr. A complete (with all biostratigraphic zones) Cretaceous-Tertiary boundary section was recovered from site 752. The first 1.5 m.y. of the Tertiary is characterized by an order-of-magnitude reduction in the flux of biogenic sediments, indicating a period of sharply reduced biological productivity at 55°S, following which the carbonate and silica sedimentation rates almost reach the previous high values of the latest Cretaceous. We recovered a complete section through the Paleocene that contains all major fossil groups and is more than 300 m thick, perhaps the best pelagic Paleocene section encountered in ocean drilling. About 42 Ma, Broken Ridge was uplifted 2500 m in response to the intra-plateau rifting event; subsequent erosion and deposition has resulted in a prominent Eocene angular unconformity atop the ridge. An Oligocene disconformity characterized by a widespread pebble layer probably represents the 30 Ma sea-level fall. The Neogene pelagic ooze on Broken Ridge has been winnowed, and thus its grain size provides a direct physical record of the energy of the southern hemisphere drift current in the Indian Ocean for the past 30 m.y.
Resumo:
An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 µM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 µM and occasionally <1.0 µM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si/m**2 (range 162-793 mmol Si/m**2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si/m**2/d, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16-21 mmol Si/m**2/d, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100-150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system. Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of <=4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.