979 resultados para Signal-noise relation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimization of the pilot overhead in wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-usedblock fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with thenormalized Doppler frequency multiplied by the number of transmit antennas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate magnetization transfer (MT) effects as a new source of contrast for imaging and tracking of peripheral foot nerves. MATERIALS AND METHODS: Two sets of 3D spoiled gradient-echo images acquired with and without a saturation pulse were used to generate MT ratio (MTR) maps of 260 μm in-plane resolution for eight volunteers at 3T. Scan parameters were adjusted to minimize signal loss due to T2 dephasing, and a dedicated coil was used to improve the inherently low signal-to-noise ratio of small voxels. Resulting MTR values in foot nerves were compared with those in surrounding muscle tissue. RESULTS: Average MTR values for muscle (45.5 ± 1.4%) and nerve (21.4 ± 3.1%) were significantly different (P < 0.0001). In general, the difference in MTR values was sufficiently large to allow for intensity-based segmentation and tracking of foot nerves in individual subjects. This procedure was termed MT-based 3D visualization. CONCLUSION: The MTR serves as a new source of contrast for imaging of peripheral foot nerves and provides a means for high spatial resolution tracking of these structures. The proposed methodology is directly applicable on standard clinical MR scanners and could be applied to systemic pathologies, such as diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double spin-echo point resolved spectroscopy sequence (PRESS) is a widely used method and standard in clinical MR spectroscopy. Existence of important J-modulations at constant echo times, depending on the temporal delays between the rf-pulses, have been demonstrated recently for strongly coupled spin systems and were exploited for difference editing, removing singlets from the spectrum (strong-coupling PRESS, S-PRESS). A drawback of this method for in vivo applications is that large signal modulations needed for difference editing occur only at relatively long echo times. In this work we demonstrate that, by simply adding a third refocusing pulse (3S-PRESS), difference editing becomes possible at substantially shorter echo times while, as applied to citrate, more favorable lineshapes can be obtained. For the example of an AB system an analytical description of the MR signal, obtained with this triple refocusing sequence (3S-PRESS), is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication is an indispensable component of animal societies, yet many open questions remain regarding the factors affecting the evolution and reliability of signalling systems. A potentially important factor is the level of genetic relatedness between signallers and receivers. To quantitatively explore the role of relatedness in the evolution of reliable signals, we conducted artificial evolution over 500 generations in a system of foraging robots that can emit and perceive light signals. By devising a quantitative measure of signal reliability, and comparing independently evolving populations differing in within-group relatedness, we show a strong positive correlation between relatedness and reliability. Unrelated robots produced unreliable signals, whereas highly related robots produced signals that reliably indicated the location of the food source and thereby increased performance. Comparisons across populations also revealed that the frequency for signal production-which is often used as a proxy of signal reliability in empirical studies on animal communication-is a poor predictor of signal reliability and, accordingly, is not consistently correlated with group performance. This has important implications for our understanding of signal evolution and the empirical tools that are used to investigate communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Common carotid artery intima-media thickness (CCIMT) is widely used as a surrogate marker of atherosclerosis, given its predictive association with cardiovascular disease (CVD). The interpretation of CCIMT values has been hampered by the absence of reference values, however. We therefore aimed to establish reference intervals of CCIMT, obtained using the probably most accurate method at present (i.e. echotracking), to help interpretation of these measures. METHODS AND RESULTS: We combined CCIMT data obtained by echotracking on 24 871 individuals (53% men; age range 15-101 years) from 24 research centres worldwide. Individuals without CVD, cardiovascular risk factors (CV-RFs), and BP-, lipid-, and/or glucose-lowering medication constituted a healthy sub-population (n = 4234) used to establish sex-specific equations for percentiles of CCIMT across age. With these equations, we generated CCIMT Z-scores in different reference sub-populations, thereby allowing for a standardized comparison between observed and predicted ('normal') values from individuals of the same age and sex. In the sub-population without CVD and treatment (n = 14 609), and in men and women, respectively, CCIMT Z-scores were independently associated with systolic blood pressure [standardized βs 0.19 (95% CI: 0.16-0.22) and 0.18 (0.15-0.21)], smoking [0.25 (0.19-0.31) and 0.11 (0.04-0.18)], diabetes [0.19 (0.05-0.33) and 0.19 (0.02-0.36)], total-to-HDL cholesterol ratio [0.07 (0.04-0.10) and 0.05 (0.02-0.09)], and body mass index [0.14 (0.12-0.17) and 0.07 (0.04-0.10)]. CONCLUSION: We estimated age- and sex-specific percentiles of CCIMT in a healthy population and assessed the association of CV-RFs with CCIMT Z-scores, which enables comparison of IMT values for (patient) groups with different cardiovascular risk profiles, helping interpretation of such measures obtained both in research and clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis comprises two study populations. The first study sample (SS1) consisted of 411 adults examined and interviewed at three annual visits. The second study sample (SS2) consisted of 1720 adults who filled in a mailed questionnaire about secondary otalgia, tinnitus and fullness of ears. In the second phase of the SS2, 100 subjects with otalgia were examined and interviewed by specialist in stomatognathic physiology and otorhinolaryngology. In the third phase, 36 subjects participated in a randomized, controlled and blinded trial of effectiveness of occlusal appliance on secondary otalgia, facial pain, headache and treatment need of temporomandibular disorders (TMD). The standardized prevalence of recurrent secondary otalgia was 6%, tinnitus 15% and fullness of ears 8%. Aural symptoms were more frequent among young than old subjects. They were associated with other, simultaneous aural symptoms, TMD pain, head and neck region pain, and visits to a physician. The subjects with aural symptoms more often had tenderness on palpation of masticatory muscles and clinical signs of temporomandibular joint than the subjects without. 85% of the subjects reporting secondary otalgia had cervical spine or temporomandibular disorder or both. In SS1, the final model of secondary otalgia included active need treatment for TMD, elevated level of stress symptoms, and bruxism. In SS2, the final models of aural symptoms included associated aural symptoms, young age, TMD pain, headache and shoulder ache. Stabilization splint more effectively alleviated secondary otalgia and active treatment need for TMD than a palatal control splint. In patients with aural pain, tinnitus or fullness of ears, it is important to first rule out otologic and nasopharyngeal diseases that may cause the symptoms. If no explanation for aural symptoms is found, temporomandibular and cervical spine disorders should be rouled out to minimize unnecessary visits to a physician.