895 resultados para Shrimps - Reproduction
Resumo:
Data flow analysis techniques can be used to help assess threats to data confidentiality and integrity in security critical program code. However, a fundamental weakness of static analysis techniques is that they overestimate the ways in which data may propagate at run time. Discounting large numbers of these false-positive data flow paths wastes an information security evaluator's time and effort. Here we show how to automatically eliminate some false-positive data flow paths by precisely modelling how classified data is blocked by certain expressions in embedded C code. We present a library of detailed data flow models of individual expression elements and an algorithm for introducing these components into conventional data flow graphs. The resulting models can be used to accurately trace byte-level or even bit-level data flow through expressions that are normally treated as atomic. This allows us to identify expressions that safely downgrade their classified inputs and thereby eliminate false-positive data flow paths from the security evaluation process. To validate the approach we have implemented and tested it in an existing data flow analysis toolkit.
Resumo:
This article presents a novel approach to confidentiality violation detection based on taint marking. Information flows are dynamically tracked between applications and objects of the operating system such as files, processes and sockets. A confidentiality policy is defined by labelling sensitive information and defining which information may leave the local system through network exchanges. Furthermore, per application profiles can be defined to restrict the sets of information each application may access and/or send through the network. In previous works, we focused on the use of mandatory access control mechanisms for information flow tracking. In this current work, we have extended the previous information flow model to track network exchanges, and we are able to define a policy attached to network sockets. We show an example application of this extension in the context of a compromised web browser: our implementation detects a confidentiality violation when the browser attempts to leak private information to a remote host over the network.
Resumo:
The ICT degrees in most Australian universities have a sequence of up to three programming subjects, or units. BABELnot is an ALTC-funded project that will document the academic standards associated with those three subjects in the six participating universities and, if possible, at other universities. This will necessitate the development of a rich framework for describing the learning goals associated with programming. It will also be necessary to benchmark exam questions that are mapped onto this framework. As part of the project, workshops are planned for ACE 2012, ICER 2012 and ACE 2013, to elicit feedback from the broader Australasian computing education community, and to disseminate the project’s findings. The purpose of this paper is to introduce the project to that broader Australasian computing education community and to invite their active participation.
Resumo:
Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.
Resumo:
Background: Exercise interventions during adjuvant cancer therapy have been shown to increase functional capacity, relieve fatigue and distress and may assist rates of chemotherapy completion. These studies have been limited to breast, gastric and mixed cancer groups and it is not yet known if a similar intervention is even feasible among women with ovarian cancer. We aimed to assess safety, feasibility and potential effect of a walking intervention in women undergoing chemotherapy for ovarian cancer. Methods: Women newly diagnosed with ovarian cancer were recruited to participate in an individualised walking intervention throughout chemotherapy and were assessed pre-and post-intervention. Feasibility measures included session adherence, compliance with exercise physiologist prescribed walking targets and self-reported program acceptability. Changes in objective physical functioning (6 minute walk test), self-reported distress (Hospital Anxiety and Depression Scale), symptoms (Memorial Symptom Assessment Scale - Physical) and quality of life (Functional Assessment of Cancer Therapy - Ovarian) were calculated, and chemotherapy completion and adverse intervention effects recorded. Results: Seventeen women were enrolled (63% recruitment rate). Mean age was 60 years (SD = 8 years), 88% were diagnosed with FIGO stage III or IV disease, 14 women underwent adjuvant and three neo-adjuvant chemotherapy. On average, women adhered to > 80% of their intervention sessions and complied with 76% of their walking targets, with the majority walking four days a week at moderate intensity for 30 minutes per session. Meaningful improvements were found in physical functioning, physical symptoms, physical well-being and ovarian cancerspecific quality of life. Most women (76%) completed ≥85% of their planned chemotherapy dose. There were no withdrawals or serious adverse events and all women reported the program as being helpful. Conclusions: These positive preliminary results suggest that this walking intervention for women receiving chemotherapy for ovarian cancer is safe, feasible and acceptable and could be used in development of future work. Trial registration: ACTRN12609000252213
Resumo:
Evaluating the safety of different traffic facilities is a complex and crucial task. Microscopic simulation models have been widely used for traffic management but have been largely neglected in traffic safety studies. Micro simulation to study safety is more ethical and accessible than the traditional safety studies, which only assess historical crash data. However, current microscopic models are unable to mimic unsafe driver behavior, as they are based on presumptions of safe driver behavior. This highlights the need for a critical examination of the current microscopic models to determine which components and parameters have an effect on safety indicator reproduction. The question then arises whether these safety indicators are valid indicators of traffic safety. The safety indicators were therefore selected and tested for straight motorway segments in Brisbane, Australia. This test examined the capability of a micro-simulation model and presents a better understanding of micro-simulation models and how such models, in particular car following models can be enriched to present more accurate safety indicators.
Resumo:
Twitter is now well established as the world’s second most important social media platform, after Facebook. Its 140-character updates are designed for brief messaging, and its network structures are kept relatively flat and simple: messages from users are either public and visible to all (even to unregistered visitors using the Twitter website), or private and visible only to approved ‘followers’ of the sender; there are no more complex definitions of degrees of connection (family, friends, friends of friends) as they are available in other social networks. Over time, Twitter users have developed simple, but effective mechanisms for working around these limitations: ‘#hashtags’, which enable the manual or automatic collation of all tweets containing the same #hashtag, as well allowing users to subscribe to content feeds that contain only those tweets which feature specific #hashtags; and ‘@replies’, which allow senders to direct public messages even to users whom they do not already follow. This paper documents a methodology for extracting public Twitter activity data around specific #hashtags, and for processing these data in order to analyse and visualize the @reply networks existing between participating users – both overall, as a static network, and over time, to highlight the dynamic structure of @reply conversations. Such visualizations enable us to highlight the shifting roles played by individual participants, as well as the response of the overall #hashtag community to new stimuli – such as the entry of new participants or the availability of new information. Over longer timeframes, it is also possible to identify different phases in the overall discussion, or the formation of distinct clusters of preferentially interacting participants.
Resumo:
Sericin and fibroin are the two major proteins in the silk fibre produced by the domesticated silkworm, Bombyx mori. Fibroin has been extensively investigated as a biomaterial. We have previously shown that fibroin can function successfully as a substratum for growing cells of the eye. Sericin has been so far neglected as a biomaterial because of suspected allergenic activity. However, this misconception has now been dispelled, and sericin’s biocompatibility is currently indisputable. Aiming at promoting sericin as a possible substratum for the growth of corneal cells in order to make tissue-engineered constructs for the restoration of the ocular surface, in this study we investigated the attachment and growth in vitro of human corneal limbal epithelial cells (HLECs) on sericin-based membranes. Sericin was isolated and regenerated from the silkworm cocoons by an aqueous procedure, manufactured into membranes, and characterized (mechanical properties, structural analysis, contact angles). Primary cell cultures from two donors were established in serum-supplemented media in the presence of murine feeder cells. Membranes made of sericin and fibroin-sericin blends were assessed in vitro as substrata for HLECs in a serum-free medium, in a cell attachment assay and in a 3-day cell growth experiment. While the mechanical characteristics of sericin were found to be inferior to those of fibroin, its ability to enhance the attachment of HLECs was significantly superior to fibroin, as revealed by the PicoGreen® assay. Evidence was also obtained that cells can grow and differentiate on these substrata.
Resumo:
The process of learning symbolic Arabic digits in early childhood requires that magnitude and spatial information integrates with the concept of symbolic digits. Previous research has separately investigated the development of automatic access to magnitude and spatial information from symbolic digits. However, developmental trajectories of symbolic number knowledge cannot be fully understood when considering components in isolation. In view of this, we have synthesized the existing lines of research and tested the use of both magnitude and spatial information with the same sample of British children in Years 1, 2 and 3 (6-8 years of age). The physical judgment task of the numerical Stroop paradigm (NSP) demonstrated that automatic access to magnitude was present from Year 1 and the distance effect signaled that a refined processing of numerical information had developed. Additionally, a parity judgment task showed that the onset of the Spatial-Numerical Association of Response Codes (SNARC) effect occurs in Year 2. These findings uncover the developmental timeline of how magnitude and spatial representations integrate with symbolic number knowledge during early learning of Arabic digits and resolve inconsistencies between previous developmental and experimental research lines.
Resumo:
Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).
Resumo:
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.
Resumo:
While it is generally accepted in the learning and teaching literature that assessment is the single biggest influence on how students approach their learning, assessment methods within higher education are generally conservative and inflexible. Constrained by policy and accreditation requirements and the need for the explicit articulation of assessment standards for public accountability purposes, assessment tasks can fail to engage students or reflect the tasks students will face in the world of practice. Innovative assessment design can simultaneously deliver program objectives and active learning through a knowledge transfer process which increases student participation. This social constructivist view highlights that acquiring an understanding of assessment processes, criteria and standards needs active student participation. Within this context, a peer-assessed, weekly, assessment task was introduced in the first “serious” accounting subject offered as part of an undergraduate degree. The positive outcomes of this assessment innovation was that student failure rates declined 15%, tutorial participation increased fourfold, tutorial engagement increased six-fold and there was a 100% approval rating for the retention of the assessment task. In contributing to the core conference theme of “seismic” shifts within higher education, in stark contrast to the positive student response, staff-related issues of assessment conservatism and the necessity of meeting increasing research commitments, threatened the assessment task’s survival. These opposing forces to change have the potential to weaken the ability of higher education assessment arrangements to adequately serve either a new generation of students or the sector's community stakeholders.
Resumo:
While it is generally accepted in the learning and teaching literature that assessment is the single biggest influence on how students approach their learning, assessment methods within higher education are generally conservative and inflexible. Constrained by policy and accreditation requirements and the need for the explicit articulation of assessment standards for public accountability purposes, assessment tasks can fail to engage students or reflect the tasks students will face in the world of practice. Innovative assessment design can simultaneously deliver program objectives and active learning through a knowledge transfer process which increases student participation. This social constructivist view highlights that acquiring an understanding of assessment processes, criteria and standards needs active student participation. Within this context, a peer-assessed, weekly, assessment task was introduced in the first “serious” accounting subject offered as part of an undergraduate degree. The positive outcomes of this assessment innovation was that student failure rates declined 15%, tutorial participation increased fourfold, tutorial engagement increased six-fold and there was a 100% approval rating for the retention of the assessment task. In contributing to the core conference theme of “seismic” shifts within higher education, in stark contrast to the positive student response, staff-related issues of assessment conservatism and the necessity of meeting increasing research commitments, threatened the assessment task’s survival. These opposing forces to change have the potential to weaken the ability of higher education assessment arrangements to adequately serve either a new generation of students or the sector's community stakeholders.
Resumo:
At the previous conference in this series, Corney, Lister and Teague presented research results showing relationships between code writing, code tracing and code explaining, from as early as week 3 of semester. We concluded that the problems some students face in learning to program start very early in the semester. In this paper we report on our replication of that experiment, at two institutions, where one is the same as the original institution. In some cases, we did not find the same relationship between explaining code and writing code, but we believe this was because our teachers discussed the code in lectures between the two tests. Apart from that exception, our replication results at both institutions are consistent with our original study.
Resumo:
Recent research on novice programmers has suggested that they pass through neo-Piagetian stages: sensorimotor, preoperational, and concrete operational stages, before eventually reaching programming competence at the formal operational stage. This paper presents empirical results in support of this neo-Piagetian perspective. The major novel contributions of this paper are empirical results for some exam questions aimed at testing novices for the concrete operational abilities to reason with quantities that are conserved, processes that are reversible, and properties that hold under transitive inference. While the questions we used had been proposed earlier by Lister, he did not present any data for how students performed on these questions. Our empirical results demonstrate that many students struggle to answer these problems, despite the apparent simplicity of these problems. We then compare student performance on these questions with their performance on six explain in plain English questions.