928 resultados para Shock-Reconstruction
Resumo:
To evaluate the association between concomitant arginine-vasopressin (AVP)/hydrocortisone therapy and mortality in severe septic shock patients.
Resumo:
OBJECTIVE: To evaluate implant accuracy and cosmetic outcome of a new intraoperative patient-specific cranioplasty method after convexity meningioma resection. METHODS: The patient's own bone flap served as a template to mold a negative form with the use of polymethyl methacrylate (PMMA). The area of bone invasion was determined and broadly excised under white light illumination with a safety margin of at least 1 cm. The definitive replica was cast within the remaining bone flap frame and the imprint. Clinical and radiologic follow-up examinations were performed 3 months after surgery. RESULTS: Four women and two men (mean age 51.4 years ± 12.8) underwent reconstruction of bone flap defects after meningioma resection. Mean duration of intraoperative reconstruction of the partial bone flap defects was 19 minutes ± 4 (range 14-24 minutes). Implant sizes ranged from 17-35 cm(2) (mean size 22 cm(2) ± 8). Radiologic and clinical follow-up examinations revealed excellent implant alignment and favorable cosmesis (visual analogue scale for cosmesis [VASC] = 97 ± 5) in all patients. CONCLUSIONS: Patient-specific reconstruction of partial bone flap defects after convexity meningioma resection using the presented intraoperative PMMA cast method resulted in excellent bony alignment and a favorable cosmetic outcome. Relatively low costs and minimized operation time for adjustment and insertion of the cranioplasty implant justify use of this method in small bony defects as well.
Resumo:
This study aims to quantify by intravital microscopy the microhemodynamic response after extracorporeal shock wave application (ESWA) to the physiologic microcirculation of the mouse dorsal skinfold chamber.
Resumo:
This thesis assesses relationships between vegetation and topography and the impact of human tree-cutting on the vegetation of Union County during the early historical era (1755-1855). I use early warrant maps and forestry maps from the Pennsylvania historical archives and a warrantee map from the Union County courthouse depicting the distribution of witness trees and non-tree surveyed markers (posts and stones) in early European settlement land surveys to reconstruct the vegetation and compare vegetation by broad scale (mountains and valleys) and local scale (topographic classes with mountains and valleys) topography. I calculated marker density based on 2 km x 2 km grid cells to assess tree-cutting impacts. Valleys were mostly forests dominated by white oak (Quercus alba) with abundant hickory (Carya spp.), pine (Pinus spp.), and black oak (Quercus velutina), while pine dominated what were mostly pine-oak forests in the mountains. Within the valleys, pine was strongly associated with hilltops, eastern hemlock (Tsuga canadensis) was abundant on north slopes, hickory was associated with south slopes, and riparian zones had high frequencies of ash (Fraxinus spp.) and hickory. In the mountains, white oak was infrequent on south slopes, chestnut (Castanea dentata) was more abundant on south slopes and ridgetops than north slopes and mountain coves, and white oak and maple (Acer spp.) were common in riparian zones. Marker density analysis suggests that trees were still common over most of the landscape by 1855. The findings suggest there were large differences in vegetation between valleys and mountains due in part to differences in elevation, and vegetation differed more by topographic classes in the valleys than in the mountains. Possible areas of tree-cutting were evenly distributed by topographic classes, suggesting Europeans settlers were clearing land and harvesting timber in most areas of Union County.
Resumo:
A standard rheumatoid forefoot reconstruction consists of arthrodesis of the first metatarsophalangeal (MTP) joint and resection arthroplasty of the lesser metatarsal heads. However, preservation of the metatarsal heads has gained renewed interest since the medical treatment of rheumatoid arthritis has improved dramatically.
Resumo:
The IABP-SHOCK-trial was a morbidity-based randomized controlled trial in patients with infarction-related cardiogenic shock (CS), which used the change of the quantified degree of multiorgan failure as determined by APACHE II score over a 4-day period as primary outcome measure. The prospective hypothesis was that adding IABP therapy to "standard care" would improve CS-triggered multi organ dysfunction syndrome (MODS). The primary endpoint showed no difference between conventionally managed cardiogenic shock patients and those with IABP support. In an inflammatory marker substudy, we analysed the prognostic value of interleukin (IL)-1β, -6, -7, -8, and -10 in patients with acute myocardial infarction complicated by cardiogenic shock.
Resumo:
Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.
Resumo:
Temporal hollowing due to temporal muscle atrophy after standard skull base surgery is common. Various techniques have been previously described to correct the disfiguring defect. Most often reconstruction is performed using freehand molded polymethylmethacrylate cement. This method and material are insufficient in terms of aesthetic results and implant characteristics. We herein propose reconstruction of such defects with a polyetheretherketone (PEEK)-based patient-specific implant (PSI) including soft-tissue augmentation to preserve normal facial topography. We describe a patient who presented with a large temporo-orbital hemangioma that had been repaired with polymethylmethacrylate 25 years earlier. Because of a toxic skin atrophy fistula, followed by infection and meningitis, this initial implant had to be removed. The large, disfiguring temporo-orbital defect was reconstructed with a PEEK-based PSI. The lateral orbital wall and the temporal muscle atrophy were augmented with computer-aided design and surface modeling techniques. The operative procedure to implant and adopt the reconstructed PEEK-based PSI was simple, and an excellent cosmetic outcome was achieved. The postoperative clinical course was uneventful over a 5-year follow-up period. Polyetheretherketone-based combined bony and soft contour remodeling is a feasible and effective method for cranioplasty including combined bone and soft-tissue reconstruction of temporo-orbital defects. Manual reconstruction of this cosmetically delicate area carries an exceptional risk of disfiguring results. Augmentation surgery in this anatomic location needs accurate PSIs to achieve satisfactory cosmetic results. The cosmetic outcome achieved in this case is superior compared with previously reported techniques.
Resumo:
Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. It was previously shown that the prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis are greatest in winter. The aim of this study was to investigate how M. catarrhalis uses the physiologic exposure to cold air to upregulate pivotal survival systems in the pharynx that may contribute to M. catarrhalis virulence. Results A 26°C cold shock induces the expression of genes involved in transferrin and lactoferrin acquisition, and enhances binding of these proteins on the surface of M. catarrhalis. Exposure of M. catarrhalis to 26°C upregulates the expression of UspA2, a major outer membrane protein involved in serum resistance, leading to improved binding of vitronectin which neutralizes the lethal effect of human complement. In contrast, cold shock decreases the expression of Hemagglutinin, a major adhesin, which mediates B cell response, and reduces immunoglobulin D-binding on the surface of M. catarrhalis. Conclusion Cold shock of M. catarrhalis induces the expression of genes involved in iron acquisition, serum resistance and immune evasion. Thus, cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that enables the bacterium to target their host cellular receptors or soluble effectors and may contribute to enhanced growth, colonization and virulence.
Resumo:
We measured δ17O and δ18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data showed that the large increase depicted at Vostok (20 ppm) during the last deglaciation, is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 13 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that relative humidity (RH) at the oceanic source region (OSR) are a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RH at the OSR.