874 resultados para Semiconductors orgànics
Resumo:
The perquisites of organic semiconductors (OSCs) in the field of organic electronics have attracted much attention due to the advantages like cost-effectiveness, solution processibility, etc. A key property in OSCs is charge carrier mobility, which depends on molecular packing, as even the slightest changes in the packing of OSC can significantly impact the mobility. Organic molecules are constructed by weak interactions, which makes the OSCs prone to adopt multiple packing arrangements, thus giving rise to polymorphism. Therefore, polymorph screening in bulk and thin films is crucial for material development. This thesis aims to present a systematic study of polymorphism of [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives functionalized with different side chains. The role of peripheral side chains has been studied since they can promote different packing arrangements. The bulk polymorph screening of OSCs was approached with conventional solution mediated recrystallization experiments like evaporation, slurry maturation, anti-solvent precipitation, etc. Each of the polymorphs were inspected for their relative stability and the kinetics of transformation was evaluated. Polymorphism in thin films was also investigated for selected OSCs. Non-equilibrium methods like, thermal gradient and solution shearing were employed to examine the nucleation, crystal growth and morphology in controlled crystallization conditions. After careful analysis of crystal phases in bulk and thin films, OFETs have been fabricated by optimizing the manufacturing conditions and the hole mobility values were extracted. The charge transport property of the OSCs tested for OFETs was supported by the ionization potential and transfer integrals calculation. An attempt to correlate the solid-state structure to electronic properties was carried out. For some of the molecules, mechanical properties have been also investigated, as the response to mechanical stress is highly susceptible to packing arrangements and the intermolecular interaction energy contributions. Additionally, collaborative research was carried out by solving and analysing the crystal structures of six oligorylene molecules.
Resumo:
Molecular materials are made by the assembly of specifically designed molecules to obtain bulk structures with desired solid-state properties, enabling the development of materials with tunable chemical and physical properties. These properties result from the interplay of intra-molecular constituents and weak intermolecular interactions. Thus, small changes in individual molecular and electronic structure can substantially change the properties of the material in bulk. The purpose of this dissertation is, thus, to discuss and to contribute to the structure-property relationships governing the electronic, optical and charge transport properties of organic molecular materials through theoretical and computational studies. In particular, the main focus is on the interplay of intra-molecular properties and inter-molecular interactions in organic molecular materials. In my three-years of research activity, I have focused on three major areas: 1) the investigation of isolated-molecule properties for the class of conjugated chromophores displaying diradical character which are building blocks for promising functional materials; 2) the determination of intra- and intermolecular parameters governing charge transport in molecular materials and, 3) the development and application of diabatization procedures for the analysis of exciton states in molecular aggregates. The properties of diradicaloids are extensively studied both regarding their ground state (diradical character, aromatic vs quinoidal structures, spin dynamics, etc.) and the low-lying singlet excited states including the elusive double-exciton state. The efficiency of charge transport, for specific classes of organic semiconductors (including diradicaloids), is investigated by combining the effects of intra-molecular reorganization energy, inter-molecular electronic coupling and crystal packing. Finally, protocols aimed at unravelling the nature of exciton states are introduced and applied to different molecular aggregates. The role of intermolecular interactions and charge transfer contributions in determining the exciton state character and in modulating the H- to J- aggregation is also highlighted.
Resumo:
The world is quickly changing, and the field of power electronics assumes a pivotal role in addressing the challenges posed by climate change, global warming, and energy management. The introduction of wide-bandgap semiconductors, particularly gallium nitride (GaN), in contrast to the traditional silicon technology, is leading to lightweight, compact and evermore efficient circuitry. However, GaN technology is not mature yet and still presents reliability issues which constrain its widespread adoption. Therefore, GaN reliability is a hotspot for the research community. Extensive efforts have been directed toward understanding the physical mechanisms underlying the performance and reliability of GaN power devices. The goal of this thesis is to propose a novel in-circuit degradation analysis in order to evaluate the long-term reliability of GaN-based power devices accurately. The in-circuit setup is based on measure-stress-measure methodology where a high-speed synchronous buck converter ensures the stress while the measure is performed by means of full I-V characterizations. The switch from stress mode to characterization mode and vice versa is automatic thanks to electromechanical and solid-state relays controlled by external unit control. Because these relays are located in critical paths of the converter layout, the design has required a comprehensive study of electrical and thermal problems originated by the use of GaN technology. In addition, during the validation phase of the converter, electromagnetic-lumped-element circuit simulations are carried out to monitor the signal integrity and junction temperature of the devices under test. However, the core of this work is the in-circuit reliability analysis conducted with 80 V GaN HEMTs under several operating conditions of the converter in order to figure out the main stressors which contribute to the device's degradation.
Resumo:
Radiation dosimetry is crucial in many fields, where the exposure of ionizing radiation must be precisely controlled to avoid health and environmental safety issues. Radiotherapy and radioprotection are two examples in which fast and reliable detectors are needed. Compact and large area wearable detectors are being developed to address real-life radiation dosimetry applications, their ideal properties include flexibility, lightness, and low-cost. This thesis contributed to the development of Radiation sensitive OXide Field Effect Transistors (ROXFETs), which are detectors able to provide fast and real-time radiation read out. ROXFETs are based on thin film transistors fabricated with high-mobility amorphous oxide semiconductor, making them compatible with large area, flexible, and low cost production over plastic substrates. The gate dielectric material has high dielectric constant and high atomic number, which results in high performances and high radiation sensitivity, respectively. The aim of this work was to establish a stable and reliable fabrication process for ROXFETs made with atomic layer deposited gate dielectric. A study on the effect of gate dielectric materials was performed, focusing the attention on the properties of the dielectric-semiconductor interface. Single and multi layer dielectric structures were compared during this work. Furthermore, the effect of annealing temperature was studied. The device performances were tested to understand the underlying physical processes. In this way, it was possible to determine a reliable fabrication procedure and an optimal structure for ROXFETs. An outstanding sensitivity of (65±3)V/Gy was measured in detectors with a bi-layer Ta₂O₅-Al₂O₃ gate dielectric with low temperature annealing performed at 180°C.