976 resultados para School size.
Resumo:
This article reports on a recent survey of employer attitudes and policies towards older workers in Australia at a time of sustained economic growth and ongoing concerns about labour shortages. Findings from a survey of 590 employers with more than 50 employees in the State of Queensland point to an unusually strong orientation towards the recruitment of older workers among respondents, although the retraining of older workers is not prioritised by the majority. The issue of workforce ageing is viewed as being of medium-term importance by the majority of respondents, although for a substantial number the issue is of immediate concern. Both sector and organisation size are predictive of the application of a broad range of policies targeting older workers, with public-sector and larger organisations more likely to be active. Concerns about workforce ageing and labour supply are predictive of employer behaviours regarding older workers, suggesting that sustained policy making may be emerging in response to population ageing over and above more immediate concerns about labour shortages and that this broad thrust of organisational policy making may be immune to the point in the economic cycle. This study found no evidence that the flexible firm will not countenance an ageing workforce.
Resumo:
Aim: To determine the effects of an acute multi-nutrient supplement on physiological, performance and recovery responses to intermittent-sprint running and muscular damage during rugby union matches. Methods: Using a randomised, double-blind, cross-over design, twelve male rugby union players ingested either 75 g of a comprehensive multi-nutrient supplement (SUPP), [Musashi] or 1 g of a taste and carbohydrate matched placebo (PL) for 5 days pre-competition. Competitive rugby union game running performance was then measured using 1 Hz GPS data (SPI10, SPI elite, GPSports), in addition to associated blood draws, vertical jump assessments and ratings of perceived muscular soreness (MS) pre, immediately post and 24 h post-competition. Baseline (BL) GPS data was collected during six competition rounds preceding data collection. Results: No significant differences were observed between supplement conditions for all game running, vertical jump, and ratings of perceived muscular soreness. However, effect size analysis indicated SUPP ingestion increased 1st half very high intensity running (VHIR) mean speed (d = 0.93) and 2nd half relative distance (m/min) (d = 0.97). Further, moderate increases in 2nd half VHIR distance (d = 0.73), VHIR m/min (d = 0.70) and VHIR mean speed (d = 0.56) in SUPP condition were also apparent. Moreover, SUPP demonstrated significant increases in 2nd half dist m/min, total game dist m/min and total game HIR m/min compared with BL data (P < 0.05). Further, large ES increases in VHIR time (d = 0.88) and moderate increases in 2nd half HIR m/min (d = 0.65) and 2nd half VHIR m/min (d = 0.74) were observed between SUPP and BL. Post-game aspartate aminotransferase (AST) (d = 1.16) and creatine kinase (CK) (d = 0.97) measures demonstrated increased ES values with SUPP, while AST and CK values correlated with 2nd half VHIR distance (r = −0.71 and r = −0.76 respectively). Elevated c-reactive protein (CRP) was observed post-game in both conditions, however was significantly blunted with SUPP (P = 0.05). Additionally, pre-game (d = 0.98) and post-game (d = 0.96) increases in cortisol (CORT) were apparent with SUPP. No differences were apparent between conditions for pH, lactate, glucose, HCO3, vertical jump assessments and MS (P > 0.05). Conclusion: These findings suggest SUPP may assist in the maintenance of VHIR speeds and distances covered during rugby union games, possibly via the buffering qualities of SUPP ingredients (i.e. caffeine, creatine, bicarbonate). While the mechanisms for these findings are unclear, the similar pH between conditions despite additional VHIR during SUPP may support this conclusion. Finally, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anti-catabolic properties of supplementation.
Resumo:
This paper addresses development of an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s α and Classification Tree were incorporated in the iDSS. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcome of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women.
Resumo:
The recently released Mathematics, Engineering & Science in the National Interest report (May, 2012) highlights the universal perspective that an education in these disciplines is essential to a nation’s future prosperity. Although studies in STEM (Science, Technology, Engineering, Mathematics) are being implemented across many schools, progress to date has been slow especially with respect to incorporating engineering experiences in the middle and primary grades. Our concerns for the limited attention given to engineering in STEM and the low uptake of university engineering courses in universities, prompted us to conduct a longitudinal project on engineering education across grade levels 7-9.
Resumo:
Despite efforts to motivate students to engage in Science, technology, engineering and mathematics (STEM) education, women are still underrepresented in these areas in the workforce and higher education. Targeting females at high school or earlier may be a key towards engaging them in STEM. In this paper we report on the research question: How do middle school females interact for learning about engineering education? This ethnographic study, part of a three-year longitudinal research project, investigated Year 8 female students’ learning about engineering concepts associated with designing, constructing, testing, and evaluating a catapult. Through a series of lead-up lessons and the four lesson catapult challenge (total of 18 x 45-minute lessons over 9 weeks), data from two girls within a focus group showed that the students needed to: (1) receive clarification on engineering terms to facilitate more fluent discourse, (2) question and debate conceptual understandings without peers being judgemental, and (3) have multiple opportunities for engaging with materials towards designing, constructing and explaining key concepts learnt. Implications for teachers undertaking STEM education are evident, including outlining expectations for clarifying STEM terms, outlining to students about interacting non-judgementally, and providing multiple opportunities for interacting within engineering education.
Resumo:
Implementing educational reform requires partnerships, and university-school collaborations in the form of investigative and experimental projects can aim to determine the practicalities of reform. However, there are funded projects that do not achieve intended outcomes. In the context of a new reform initiative in education, namely, science, technology, engineering and mathematics (STEM) education, this article explores the management of a government-funded project. In a university school partnership for STEM education, how can leadership be distributed for achieving project outcomes? Participants included university personnel from different STEM areas, school teachers and school executives. Data collected included observations, interviews, resource materials, and video and photographic images. Findings indicated that leadership roles were distributed and selfactivated by project partners according to their areas of expertise and proximal activeness to the project phases, that is: (1) establishing partnerships; (2) planning and collaboration; (3) project implementation; and (4) project evaluation and further initiatives. Leadership can be intentional and unintentional within project phases, and understanding how leadership can be distributed and selfactivated more purposefully may aid in generating more expedient project outcomes.
Resumo:
Modern applications comprise multiple components, such as browser plug-ins, often of unknown provenance and quality. Statistics show that failure of such components accounts for a high percentage of software faults. Enabling isolation of such fine-grained components is therefore necessary to increase the robustness and resilience of security-critical and safety-critical computer systems. In this paper, we evaluate whether such fine-grained components can be sandboxed through the use of the hardware virtualization support available in modern Intel and AMD processors. We compare the performance and functionality of such an approach to two previous software based approaches. The results demonstrate that hardware isolation minimizes the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution's correctness. We also show that our relatively simple implementation has equivalent run-time performance, with overheads of less than 34%, does not require custom tool chains and provides enhanced functionality over software-only approaches, confirming that hardware virtualization technology is a viable mechanism for fine-grained component isolation.
Resumo:
Over the past two decades, flat-plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere [1-6]. The ratio of terrestrial to extraterrestrial material and the nature of material collected may vary over observable time scales. Variations in particle number density can be important since the earth’s atmospheric radiation balance, and therefore the earth’s climate, can be influenced by articulate absorption and scattering of radiation from the sun and earth [7-9]. In order to assess the number density of solid particles in the stratosphere, we have examined a representative fraction of the so1id particles from two flat-plate collection surfaces, whose collection dates are separated in time by 5 years.
Resumo:
CI chondrites are used pervasively in the meteorite literature as a cosmochemical reference point for bulk compositions[1], isotope analyses[2] and, within certain models of meteorite evolution, as an important component of an alteration sequence within the carbonaceous chondrite subset[3]. More recently, the chemical variablity of CI chondrite matrices (which comprise >80% of the meteorite), has been cited in discussions about the "chondritic" nature of spectroscopic data from P/comet Halley missions[4] and of chemical data from related materials such as interplanetary dust particles[5]. Most CI chondrites have been studied as bulk samples(e.g. major and trace element abundances)and considerable effort has also been focussed on accessory phases such as magnetites, olivine, sulphates and carbonates [6-8]. A number of early studies showed that the primary constituents of CI matrices are layer silicates and the most definitive structural study on powdered samples identified two minerals: montmorillonite and serpentine[9]. In many cases, as with the study by Bass[9],the relative scarcity of most CI chondrites restricts such bulk analyses to the Orgueil meteorite. The electron microprobe/SEM has been used on petrographic sections to more precisely define the "bulk" composition of at least four CI matrices[3], and as recently summarised by McSween[3], these data define a compositional trend quite different to that obtained for CM chondrite matrices. These "defocussed-beam" microprobe analyses average major element compositions over matrix regions ~lOOµm in diameter and provide only an approximation to silicate mineral composition(s) because their grain sizes are much less than the diameter of the beam. In order to (a) more precisely define the major element compositions of individual mineral grains within CI matrices, and (b)complement previous TEM studies [11,12], we have undertaken an analytical electron microscopy (AEM) study of Alais and Orgueil matrices.
Resumo:
A mineralogical survey of chondritic interplanetary dust particles (IDPs)showed that these micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class1. Models of chondritic IDP mineral evolution generally ignore the typical (ultra-) fine grain size of consituent minerals which range between 0.002-0.1µm in size2. The chondritic porous (CP) subset of chondritic IDPs is probably debris from short period comets although evidence for a cometary origin is still circumstantial3. If CP IDPs represent dust from regions of the Solar System in which comet accretion occurred, it can be argued that pervasive mineralogical evolution of IDP dust has been arrested due to cryogenic storage in comet nuclei. Thus, preservation in CP IDPs of "unusual meteorite minerals", such as oxides of tin, bismuth and titanium4, should not be dismissed casually. These minerals may contain specific information about processes that occurred in regions of the solar nebula, and early Solar System, which spawned the IDP parent bodies such as comets and C, P and D asteroids6. It is not fully appreciated that the apparent disparity between the mineralogy of CP IDPs and carbonaceous chondrite matrix may also be caused by the choice of electron-beam techniques with different analytical resolution. For example, Mg-Si-Fe distributions of Cl matrix obtained by "defocussed beam" microprobe analyses are displaced towards lower Fe-values when using analytical electron microscope (AEM)data which resolve individual mineral grains of various layer silicates and magnetite in the same matrix6,7. In general, "unusual meteorite minerals" in chondritic IDPs, such as metallic titanium, Tin01-n(Magneli phases) and anatase8 add to the mineral data base of fine-grained Solar System materials and provide constraints on processes that occurred in the early Solar System.
Resumo:
Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.
Resumo:
Circulating tumour cells (CTCs) have attracted much recent interest in cancer research as a potential biomarker and as a means of studying the process of metastasis. It has long been understood that metastasis is a hallmark of malignancy, and conceptual theories on the basis of metastasis from the nineteenth century foretold the existence of a tumour "seed" which is capable of establishing discrete tumours in the "soil" of distant organs. This prescient "seed and soil" hypothesis accurately predicted the existence of CTCs; microscopic tumour fragments in the blood, at least some of which are capable of forming metastases. However, it is only in recent years that reliable, reproducible methods of CTC detection and analysis have been developed. To date, the majority of studies have employed the CellSearch™ system (Veridex LLC), which is an immunomagnetic purification method. Other promising techniques include microfluidic filters, isolation of tumour cells by size using microporous polycarbonate filters and flow cytometry-based approaches. While many challenges still exist, the detection of CTCs in blood is becoming increasingly feasible, giving rise to some tantalizing questions about the use of CTCs as a potential biomarker. CTC enumeration has been used to guide prognosis in patients with metastatic disease, and to act as a surrogate marker for disease response during therapy. Other possible uses for CTC detection include prognostication in early stage patients, identifying patients requiring adjuvant therapy, or in surveillance, for the detection of relapsing disease. Another exciting possible use for CTC detection assays is the molecular and genetic characterization of CTCs to act as a "liquid biopsy" representative of the primary tumour. Indeed it has already been demonstrated that it is possible to detect HER2, KRAS and EGFR mutation status in breast, colon and lung cancer CTCs respectively. In the course of this review, we shall discuss the biology of CTCs and their role in metastagenesis, the most commonly used techniques for their detection and the evidence to date of their clinical utility, with particular reference to lung cancer.
Resumo:
Many researchers have demonstrated the applicability of the Theory of Planned Behaviour (TPB) in predicting both intention to speed and actual speeding behaviour. However, there remain shortcomings in the explanatory power of the TPB, with research suggesting that even when drivers had reported an intention to not speed approximately 25% of drivers report behaviour that does not align with their intentions (i.e., they engaged in speeding, Elliott & Armitage, 2006). This research explores the role of a novel and promising construct, mindfulness, in enhancing the explanatory utility of the TPB for the understanding of drivers’ speeding behaviour in school zones. Mindfulness is a concept which has been widely used in studies of consciousness, but has recently been applied to the understanding of behaviour in other areas, including clinical psychology, physical activity, education and business. It has been suggested that mindfulness can also be applied to road safety, though its application within this context currently remains limited. This study was based on an e-survey of the general driving public (N=240). Overall, the results identified mindfulness as a construct which may aid understanding of the relationship between drivers’ intentions and behaviour. Theoretically, the findings may have implications in terms of identifying mindfulness as an additional explanatory construct within a TPB framework. In road safety practice, the findings suggest that efficacious countermeasures around school zones may be those that function to heighten drivers’ mindfulness, such as flashing lights and physical speed reduction measures.
Resumo:
Student engagement tends to be viewed as a reflection of learning processes, and in the context of first year university studies, it is a crucial means of an educational process that establishes the foundations for successful later year studies (Krausse and Coates, 2008). In the context of first year design studio teaching in higher education, fostering students’ positive engagement poses challenges to design educators as current trends set these design studios to be large size classes that makes difficult to manage and follow up students’ individual learning experiences. At QUT’s first year industrial design studio classes we engage in a variety of teaching pedagogies from which we identify two of them as instrumental vehicles to foster positive student engagement. Concept bombs and the field trip experience provide such platform as shown in student responses through a learning experience survey.