928 resultados para Scaffold, Calcium silicate, Bone regeneration, Mechanical strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a proposal to create a Polo Ceramic Craft in the town of Indiana - SP, through the potter’s organization in a cooperative that will coordinate activities to add value to ceramic pieces. To achieve this, two things are essential: improving the ceramic body and improve the properties of the ceramic material. For the first action it’s necessary to create a Central Mass Production of Ceramics, to provide raw materials and homogeneous composition that results in differentiated ceramic after burning process (sintering). To this end, we propose the incorporation of additives (which act as fluxes) to the clay material. These additives can be mineral such as feldspar and nefelinas or leavings, such as glass powder obtained from disposable containers. For the second action is necessary to acquire an oven, electric or gas, it reaches higher temperatures (around 1200 ° C). The presence of the additive and burning at higher temperatures will enable better production of sintered ceramic material with less porosity and water absorption and higher mechanical strength, and pieces vitrified and glazed, allowing them to assign a higher value. For the production of these materials (thinner walls) requires a smaller volume of clayey raw materials. Besides benefiting the ceramic pieces, the proposed changes reduce the environmental impact caused by burning wood, since it will be replaced by natural gas (or electricity), and even will reduce the disposal of glass containers in the environment by recycling and incorporating this material in the clay. From a social standpoint, the cooperative is crucial to the viability of the proposed project, to coordinate activities and commercial production, which will result in better wages and profits for companies and consequently for the city and its population

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of ceramic materials in ballistic armor is considerable. Such materials can be very harder and lighter than metallic materials commonly used and it presents advantages to replace metallic materials when necessary toughness can be achieved. However, as SiC and Al2O3 ceramic, traditionally used for shielding, still have high manufacturing cost or low density do not have enough to shield applications such as aircraft. An alternative is the glass-ceramics, ceramics obtained by controlled crystallization of glasses, whose properties can be adjusted by choosing the chemical composition of glass, heat treatment of crystallization and special treatments such as ion exchange on the surface, resulting in increased mechanical strength . The objective of this project is to study the kinetics of crystallization of a glass composition based on cordierite (2MgO.2Al2O3.5SiO2), low density and high hardness, for the manufacture of glass-ceramics for ballistic tests. Shown in this report are results of heat treatment of crystallization and characterization by thermal analysis (DSC) glass obtained previously, indicating uneven distribution of crystals, and drying, weighing, mixing of raw materials and a new fusion of glass, the same composition

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass reduction coupled with the mechanical performance in service has been the goal of many projects related to the transport area, considering the advantages that mass reduction can bring. However, make a simple material substitution without design a new geometry to corroborate for the best component performance, often makes the replacement unviable. In this study, it was investigated the advantages of replacing the prototype BAJA SAE front suspension lower arm of Equipe Piratas do Vale de BAJA SAE - Universidade Paulista, Campus Guaratinguetá, actually produced with steel, for a new component made of carbon fiber composite. The new geometry has been developed to provide the best possible performance for this component and your easy manufacturing. The study was done using the 3D modeling tools and computer simulations via finite element method. The first stage of this work consisted on calculation of the estimated maximum contact force tire / soil in a prototype landing after jump at one meter high, drop test in the laboratory with the current vehicle, current front suspension lower arm 3D modeling, finite element simulation and analysis of critical regions. After all current component analysis, a new geometry for the part in study was designed and simulated in order to reduce the component mass and provide a technological innovation using composite materials. With this work it was possible to obtain a theoretical component mass reduction of 25,15% maintaining the mechanical strength necessary for the appropriated component performance when incited

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of technology for structural composites has as one of its ends form a set of materials that combine high values of mechanical strength and stiffness and low density. Today, companies like Embraer and PETROBRAS and research institutions like NASA, working with these materials with recognized advantages in terms of weight gain, increased performance and low corrosion. We have developed a systematic study to determine the bond strength between composite carbon fiber / epoxy and fiberglass / epoxy laminate both bonded to a carbon steel which are widely used in the petrochemical industry and repair. For morphological evaluation and bonding between materials of different natures, ultrasound analysis, optical microscopy and stereoscopy were performed. To simulate actual conditions, the composites were subjected to conditioning by using heat shock temperatures from -50 to 80 ° C for 1000 cycles for composite carbon fiber / epoxy composites and 2000 cycles for fiberglass / epoxy . The use of composites studied here proved to be efficient to perform repairs in metallic pipes with application petrochemical, as when exposed to sudden changes of temperature (-50 ° to 80 ° C) cycling at 1000 to 2000 times, its mechanical properties (shear and tensile) practically do not change

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of mechanical properties of high-alloy special steels is of great interest of the steel industry due to the great demand by companies that manufacture automotive components of high criticality, and also because of its high commercial value. However, the development of this type of alloy metals demand highly technical knowledge. Among these extremely important kinds of steel, the subject which is the interest of this study is the special steel modified by niobium. The manganese and niobium are the main alloying elements in the composition of these steels, both of them increase the stability of the austenite region, however, manganese increases the hardenability and tensile yield strength, and niobium increases the mechanical strength and promotes refining the grain. The mechanical characterization of steel SAE 1312 modified the niobium was made in order to gain a better understanding of the influence on the mechanical properties caused by aging at different temperatures and for different reductions in the drawing of gauge material. This characterization was made by means of tensile test and hardness. This material showed an increase in yield strength and hardness when gauge with large reductions during the wiredrawing, but when subjected to aging temperatures higher than 300 ° C had a slight loss of these properties

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid composites combining metal plates and laminates with continuous fiber reinforced polymer, called fiber-metal (CHMF), have been particularly attractive for aerospace applications, due mainly to their high mechanical strength and stiffness associated with low density. These laminates (CHMF) consist of a sandwich structure consisting of layers of polymer composites and metal plates, stacked alternately. This setting allows you to combine the best mechanical performance of polymer composites reinforced with long fibers, to the high toughness of metals. Environmental effects should always be considered in the design of structural components, because these materials in applications are submitted to the effects of moisture in the atmosphere, the large cyclical variations of temperature around 82 ° C to -56 ° C, and high effort mechanical. The specimens of fibermetal composite were prepared at EMBRAER with titanium plates and laminates of carbon fiber/epoxy resin. This study aims to evaluate the effect of different environmental conditions (water immersion, hygrothermal chamber and thermal shock) of laminate hybrid titanium/carbon fiber/epoxy resin. The effects of conditioning were evaluated by interlaminar shear tests - ILSS, tensile, and vibration free

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The waste, exaggerated and incorrect disposal of biomass are common practices in modern times where everything is disposable. However the growing concern with the nature and the environment compel man to give nobler destinations for these products through sustainability and recycling of waste. Banana peel is a residual biomass, which is not consumed. It generates tons of waste per week in São Paulo city. This trash is disposed in dumps and landfills, which could be reduced by using it as reinforcement in natural composites. The high density polyethylene (HDPE) is a polymer derived from the ethylene polymerization and is easily recycled. Which makes it a sustainable material. In the present work characteristics of the natural composite composed with banana peel and high-density polyethylene were studied. It was noted that removing the lignin present in the banana peel, the fiber introduces a significant improvement in thermal resistance. The preparation of composite was made with a ratio of 5% and 10% of reinforcement in comparison with polymeric matrix mass. Composites were thermally, mechanically and microscopically characterized. The addition of fiber in the polymer increased the mechanical strength of the composite. The fiber surface treatment with distilled water removed the amorphous material present in the fibers, improving significantly thermal stability and increasing crystallinity of the celullose. The addition of 5% fiber in mass to the polymer increased significantly the tensile strength and elasticity modulus for the composite. With 10% of fiber addiction there were also an improvement when compared with pure HDPE, but when compared with 5% composite the mechanical properties are slightly lower. This may be due to the fiber particle size, which are small and eventually become a hub of tension ... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : The objective of this study was to evaluate quantitatively and to describe qualitatively the process of bone repair in the interface of receptor bed and graft autogenous bone block with or without a e-PTFE membrane, in osteopenia induced rats. To this end, we used forty-eight Wistar rats weighing about 300g, in which, with the aid of 4.1 mm trephine a graft was removed from the parietal bone and fixed to the surface of the left mandibular ramus. The animals were randomly divided into four experimental groups: Group 1 (n=12): SHAM operated and autogenous bone graft only; Group 2 (n=12): SHAM and autogenous bone graft covered by e-PTFE membrane; Group 3 (n=12): ovariectomized rats (OVX) and autogenous bone graft only; Group 4 (n=12): OVX and autogenous bone graft covered by e-PTFE membrane. The animals in each group were sacrificed at three time periods: 21, 45 and 60 days, each time with 4 animals per group. The specimens were decalcified and included, the sections were stained with HE and subjected to histological and histomorphometric analysis in light microscopy. The results of the ANOVA showed that the variables on the condition (OVZ and SHAM), and the time (21, 45 and 60 days) were statistically significant, and can be established with the Tukey test (5%) that the period 21-day differs significantly from the periods of 45 and 60 days, which did not differ among themselves. The descriptive histological analysis showed integration of the graft in all animals. It was concluded that the initial integration of the graft bed was negatively affected in the presence of induced osteopenia, and that the use or not of a e-PTFE membrane did not interfere in the process of integration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to growing concerns for reducing environmental damage caused by the use of non-renewable raw materials, there is a growing demand for research related to aggregate technology with environmental preservation. Thus, the use of non-renewable materials and less aggressive materials has been gaining attention. About composite materials, the exchange of synthetic fibers by natural fibers, especially vegetable fiber as reinforcement, has been increasing, due to its physical-chemical properties such as mechanical strength, nontoxic, low cost, low density, processing flexibility, non-abrasive to the process equipment, requiring simple surface treatments, etc. This objective was to process composites reinforced with long fibers of sapegrass in epoxy matrix and characterize the composites through mechanical tests. Three groups of composites were prepared according to the treatment received by the reinforcement: without treatment, alkali treatment at concentration of 5% w/v and alkali treatment at 10% w/v concentration. The materials were analyzed by tensile and flexural, and tests also optical microscopy and scanning electron microscopy (SEM). The results were statistically analyzed. As the main result, the alkali treatment of 5% in the sapegrass fibers increases the tensile and flexural strength, as a consequence of the improve adhesion between matrix and reinforcement

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanostructured materials over the last decade have been increasing the variety of studies and research applications in many industries. From the understanding and manipulation of nanoscale is possible to obtain high-performance materials. One method, which has been very effective in obtaining of nanostructured composites, is the electrospinning, a technique that uses electrostatic forces to produce fibers from a polymer solution. By understanding and controlling of process conditions, such as solution viscosity, working distance, the velocity of the collector, applied voltage and others conditions, it is possible to obtain fibers in many different morphologies. This work aims to obtain nanostructured composites from polysulfone (PSU) a thermoplastic polymer with high oxidation resistance and good mechanical strength at high temperatures and carbon nanotubes (CNTs) that are excellent reinforcements for polymer materials, their mechanical resistance is greater than that of all known materials; using the electrospinning process via polymer solution. Were used polysulfone solutions, n,n-ndimetil acetamide (PSU / DMAc) and this same solution added of CNTs in order to obtain the nanofibers. In both cases were analyzed the effectiveness of the process from the analysis of fiber diameters, rheological behavior and infrared spectroscopy. The results obtained confirmed the efficiency of the electrospinning process to obtain polymeric fibers