1000 resultados para Salted fish.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is a result of long-term fish monitoring studies supported by the National Park Service (NPS) at the Virgin Islands National Park since 1988 and is now a joint NPS and NOAA collaboration. Reef fish monitoring data collected from 1988 to 2006 within Virgin Islands National Park (VINP) and adjacent reefs around St. John, U.S. Virgin Islands (USVI) were analyzed to provide information on the status of reef fishes during the monitoring period. Monitoring projects were initiated by the National Park Service (NPS) in the 1980s to provide useful data for evaluation of resources and for development of a long-term monitoring program. Monthly monitoring was conducted at two reef sites (Yawzi Point and Cocoloba Cay) starting in November 1988 for 2.5 years to document the monthly/seasonal variability in reef fish assemblages. Hurricane Hugo (a powerful Category 4 storm) struck the USVI in September 1989 resulting in considerable damage to the reefs around St. John. Abundance of fishes was lower at both sites following the storm, however, a greater effect was observed at Yawzi Point, which experienced a more direct impact from the hurricane. The storm affected species differently, with some showing only small, short-term declines in abundance, and others, such as the numerically abundant blue chromis (Chromis cyanea), a planktivorous damselfish, exhibiting a larger and longer recovery period. This report provides: 1) an evaluation of sampling methods, sample size, and methods used during the sampling period, 2) an evaluation of the spatial and temporal variability in reef fish assemblages at selected reef sites inside and outside of VINP, and 3) an evaluation of trends over 17 years of monitoring at the four reference sites. Comparisons of methods were conducted to standardize assessments among years. Several methods were used to evaluate sample size requirements for reef fish monitoring and the results provided a statistically robust justification for sample allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impacts of widening and deepening the existing navigation channel in Grays Harbor on Dungeness crab, crangon shrimp and fish was investigated. The spatial and temporal distribution of these organisms was studied using an otter trawl and ring nets, and the uptake of organisms by dredges was estimated from samples collected on working hopper and pipeline dredges. ... Impacts of the dredging project on crabs, shrimp and fish could be associated with entrainment, food loss and toxicants released from sediments. Scenarios are presented that predict impacts. Suggestions for reducing impacts are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fisheries models have traditionally focused on patterns of growth, fecundity, and survival of fish. However, reproductive rates are the outcome of a variety of interconnected factors such as life-history strategies, mating patterns, population sex ratio, social interactions, and individual fecundity and fertility. Behaviorally appropriate models are necessary to understand stock dynamics and predict the success of management strategies. Protogynous sex-changing fish present a challenge for management because size-selective fisheries can drastically reduce reproductive rates. We present a general framework using an individual-based simulation model to determine the effect of life-history pattern, sperm production, mating system, and management strategy on stock dynamics. We apply this general approach to the specific question of how size-selective fisheries that remove mainly males will impact the stock dynamics of a protogynous population with fixed sex change compared to an otherwise identical dioecious population. In this dioecious population, we kept all aspects of the stock constant except for the pattern of sex determination (i.e. whether the species changes sex or is dioecious). Protogynous stocks with fixed sex change are predicted to be very sensitive to the size-selective fishing pattern. If all male size classes are fished, protogynous populations are predicted to crash even at relatively low fishing mortality. When some male size classes escape fishing, we predict that the mean population size of sex-changing stocks will decrease proportionally less than the mean population size of dioecious species experiencing the same fishing mortality. For protogynous species, spawning-per-recruit measures that ignore fertilization rates are not good indicators of the impact of fishing on the population. Decreased mating aggregation size is predicted to lead to an increased effect of sperm limitation at constant fishing mortality and effort. Marine protected areas have the potential to mitigate some effects of fishing on sperm limitation in sex-changing populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our analyses of observer records reveal that abundance estimates are strongly influenced by the timing of longline operations in relation to dawn and dusk and soak time— the amount of time that baited hooks are available in the water. Catch data will underestimate the total mortality of several species because hooked animals are “lost at sea.” They fall off, are removed, or escape from the hook before the longline is retrieved. For example, longline segments with soak times of 20 hours were retrieved with fewer skipjack tuna and seabirds than segments with soak times of 5 hours. The mortality of some seabird species is up to 45% higher than previously estimated. The effects of soak time and timing vary considerably between species. Soak time and exposure to dusk periods have strong positive effects on the catch rates of many species. In particular, the catch rates of most shark and billfish species increase with soak time. At the end of longline retrieval, for example, expected catch rates for broadbill swordfish are four times those at the beginning of retrieval. Survival of the animal while it is hooked on the longline appears to be an important factor determining whether it is eventually brought on board the vessel. Catch rates of species that survive being hooked (e.g. blue shark) increase with soak time. In contrast, skipjack tuna and seabirds are usually dead at the time of retrieval. Their catch rates decline with time, perhaps because scavengers can easily remove hooked animals that are dead. The results of our study have important implications for fishery management and assessments that rely on longline catch data. A reduction in soak time since longlining commenced in the 1950s has introduced a systematic bias in estimates of mortality levels and abundance. The abundance of species like seabirds has been over-estimated in recent years. Simple modifications to procedures for data collection, such as recording the number of hooks retrieved without baits, would greatly improve mortality estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A density prediction model for juvenile brown shrimp (Farfantepenaeus aztecus) was developed by using three bottom types, five salinity zones, and four seasons to quantify patterns of habitat use in Galveston Bay, Texas. Sixteen years of quantitative density data were used. Bottom types were vegetated marsh edge, submerged aquatic vegetation, and shallow nonvegetated bottom. Multiple regression was used to develop density estimates, and the resultant formula was then coupled with a geographical information system (GIS) to provide a spatial mosaic (map) of predicted habitat use. Results indicated that juvenile brown shrimp (<100 mm) selected vegetated habitats in salinities of 15−25 ppt and that seagrasses were selected over marsh edge where they co-occurred. Our results provide a spatially resolved estimate of high-density areas that will help designate essential fish habitat (EFH) in Galveston Bay. In addition, using this modeling technique, we were able to provide an estimate of the overall population of juvenile brown shrimp (<100 mm) in shallow water habitats within the bay of approximately 1.3 billion. Furthermore, the geographic range of the model was assessed by plotting observed (actual) versus expected (model) brown shrimp densities in three other Texas bays. Similar habitat-use patterns were observed in all three bays—each having a coefficient of determination >0.50. These results indicate that this model may have a broader geographic application and is a plausible approach in refining current EFH designations for all Gulf of Mexico estuaries with similar geomorphological and hydrological characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the diets and habitat shift of juvenile red snapper (Lutjanus campechanus) in the northeast Gulf of Mexico. Fish were collected from open sand-mud habitat (little to no relief), and artificial reef habitat (1-m3 concrete or PVC blocks), from June 1993 through December 1994. In 1994, fish settled over open habitat from June to September, as shown by trawl collections, then began shifting to reef habitat — a shift that was almost completed by December as observed by SCUBA visual surveys. Stomachs were examined from 1639 red snapper that ranged in size from 18.0 to 280.0 mm SL. Of these, 850 fish had empty stomachs, and 346 fish from open habitat and 443 fish from reef habitat contained prey. Prey were identified to the lowest possible taxon and quantified by volumetric measurement. Specific volume of particular prey taxa were calculated by dividing prey volume by individual fish weight. Red snapper shifted diets with increasing size. Small red snapper (<60 mm SL) fed mostly on chaetognaths, copepods, shrimp, and squid. Large red snapper (60–280 mm SL) shifted feeding to fish prey, greater amounts of squid and crabs, and continued feeding on shrimp. We compared red snapper diets for overlapping size classes (70–160 mm SL) of fish that were collected from both habitats (Bray-Curtis dissimilarity index and multidimensional scaling analysis). Red snapper diets separated by habitat type rather than fish size for the size ranges that overlapped habitats. These diet shifts were attributed to feeding more on reef prey than on open-water prey. Thus, the shift in habitat shown by juvenile red snapper was reflected in their diet and suggested differential habitat values based not just on predation refuge but food resources as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical process in assessing the impact of marine sanctuaries on fish stocks is the movement of fish out into surrounding fished areas. A method is presented for estimating the yearly rate of emigration of animals from a protected (“no-take”) zone. Movement rates for exploited populations are usually inferred from tag-recovery studies, where tagged individuals are released into the sea at known locations and their location of recapture is reported by fishermen. There are three drawbacks, however, with this method of estimating movement rates: 1) if animals are tagged and released into both protected and fished areas, movement rates will be overestimated if the prohibition on recapturing tagged fish later from within the protected area is not made explicit; 2) the times of recapture are random; and 3) an unknown proportion of tagged animals are recaptured but not reported back to researchers. An estimation method is proposed which addresses these three drawbacks of tag-recovery data. An analytic formula and an associated double-hypergeometric likelihood method were derived. These two estimators of emigration rate were applied to tag recoveries from southern rock lobsters (Jasus edwardsii) released into a sanctuary and into its surrounding fished area in South Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding recolonization processes of intertidal fish assemblages is integral for predicting the consequences of significant natural or anthropogenic impacts on the intertidal zone. Recolonization of experimentally defaunated intertidal rockpools by fishes at Bass Point, New South Wales (NSW), Australia, was assessed quantitatively by using one long-term and two short-term studies. Rockpools of similar size and position at four sites within the intertidal zone were repeatedly defaunated of their fish fauna after one week, one month, and three months during two shortterm studies in spring and autumn (5 months each), and every six months for the long-term study (12 months). Fish assemblages were highly resilient to experimental perturbations—recolonizing to initial fish assemblage structure within 1−3 months. This recolonization was primarily due to subadults (30−40 mm TL) and adults (>40 mm TL) moving in from adjacent rockpools and presumably to abundant species competing for access to vacant habitat. The main recolonizers were those species found in highest numbers in initial samples, such as Bathygobius cocosensis, Enneapterygius rufopileus, and Girella elevata. Defaunation did not affect the size composition of fishes, except during autumn and winter when juveniles (<30 mm TL) recruited to rockpools. It appears that Bass Point rockpool fish assemblages are largely controlled by postrecruitment density-dependent mechanisms that indicate that recolonization may be driven by deterministic mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive plankton collections were taken during seven September cruises (1990–93) along the inner continental shelf of the northcentral Gulf of Mexico (GOM). Despite the high productivity and availability of food during these cruises, significant small-scale spatial variability was found in larval growth rates for both Atlantic bumper (Chloroscombrus chrysurus, Carangidae) and vermilion snapper (Rhomboplites aurorubens, Lutjanidae). The observed variability in larval growth rates was not correlated with changes in water temperature or associated with conspicuous hydrographic features and suggested the existence of less-recognizable regions where conditions for growth vary. Cruise estimates of mortality coefficients (Z) for larval Atlantic bumper (n=32,241 larvae from six cruises) and vermilion snapper (n= 2581 larvae from four cruises) ranged from 0.20 to 0.37 and 0.19 to 0.29, respectively. Even in a subtropical climate like the GOM, where larval-stage durations may be as short as two weeks, observed variability in growth rates, particularly when combined with small changes in mortality rates, can cause order-of-magnitude differences in cumulative larval survival. To what extent the observed differences in growth rates at small spatial scales are fine-scale “noise” that ultimately is smoothed by larger-scale processes is not known. Future research is needed to further characterize the small-scale variability in growth rates of larvae, particularly with regard to microzooplankton patchiness and the temporal and spatial pattern of potential predators. Small-scale spatial variability in larval growth rates may in fact be the norm, and understanding the implications of this subtle mosaic may help us to better evaluate our ability to partition the causes of recruitment variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recreational fisheries in the waters off the northeast U.S. target a variety of pelagic and demersal fish species, and catch and effort data sampled from recreational fisheries are a critical component of the information used in resource evaluation and management. Standardized indices of stock abundance developed from recreational fishery catch rates are routinely used in stock assessments. The statistical properties of both simulated and empirical recreational fishery catch-rate data such as those collected by the National Marine Fisheries Service (NMFS) Marine Recreational Fishery Statistics Survey (MRFSS) are examined, and the potential effects of different assumptions about the error structure of the catch-rate frequency distributions in computing indices of stock abundance are evaluated. Recreational fishery catch distributions sampled by the MRFSS are highly contagious and overdispersed in relation to the normal distribution and are generally best characterized by the Poisson or negative binomial distributions. The modeling of both the simulated and empirical MRFSS catch rates indicates that one may draw erroneous conclusions about stock trends by assuming the wrong error distribution in procedures used to developed standardized indices of stock abundance. The results demonstrate the importance of considering not only the overall model fit and significance of classification effects, but also the possible effects of model misspecification, when determining the most appropriate model construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial variation in demographic parameters of the red throat emperor (Lethrinus miniatus) was examined among 12 coral reefs in three geographic regions (Townsville, Mackay, and Storm Cay) spanning over 3° of latitude of the Great Barrier Reef, Australia. Estimates of demographic parameters were based on age estimates from counts of annuli in whole otoliths because there was no significant difference in age estimates between whole and sectioned otoliths. There were significant regional differences in age structures, rates of somatic and otolith growth, and total mortality. The Townsville region was characterized by the greatest proportion of older fish, the smallest maximum size, and the lowest rates of otolith growth and total mortality. In contrast the Mackay region was characterized by the highest proportion of younger fish, the largest maximum size, and the highest rates of otolith growth and total mortality. Demographic parameters for the Storm Cay region were intermediate between the other two regions. Historic differences in fishing pressure and regional differences in productivity are two alternative hypotheses given to explain the regional patterns in demographic parameters. All demographic parameters were similar among the four reefs within each region. Thus, subpopulations with relatively homogeneous demographic parameters occurred on scales of reef clusters. Previous studies, by contrast, have found substantial between-reef variation in demographic parameters within regions. Thus spatial variation in demographic parameters for L. miniatus may differ from what is assumed typical for a coral-reef fish metapopulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fishes are widely known to aggregate around floating objects, including flotsam and fish aggregating devices (FADs).The numbers and diversity of juvenile fishes that associated with floating objects in the nearshore waters of the eastern tropical Pacific were recording by using FADs as an experimental tool. The effects of fish removal, FAD size, and the presence or absence of a fouling community at the FAD over a period of days, and the presence of prior recruits over a period of hours were evaluated by using a series of experiments. The removal of FAD-associated fish assemblages had a significant effect on the number of the dominant species (Abudefduf troschelii) in the following day’s assemblage compared to FADs where the previous day’s assemblage was undisturbed; there was no experimental effect on combined species totals. Fishes do, however, discriminate among floating objects, forming larger, more species-rich assemblages around large FADs compared to small ones. Fishes also formed larger assemblages around FADs possessing a fouling biota versus FADs without a fouling biota, although this effect was also closely tied to temporal factors. FADs enriched with fish accumulated additional recruits more quickly than FADs that were not enriched with fish and therefore the presence of prior recruits had a strong, positive effect on subsequent recruitment. These results suggest that fish recruitment to floating objects is deliberate rather than haphazard or accidental and they sup-port the hypothesis that flotsam plays a role in the interrelationship between environment and some juvenile fishes. These results are relevant to the use of FADs for fisheries, but emphasize that further research is necessary for applied interests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The northern lampfish (Stenobrachius leucopsarus, family Myctophidae) and northern smoothtongue (Leuroglossus schmidti, family Bathylagidae) are mesopelagic fishes, defined by their vertical distribution in the mesopelagic zone (200–1000 m) during daylight hours. Northern lampfish range from the Bering Sea to southern California (Shimada, 1948), where their abundance is highest along the continental slope and decreases over the continental shelf. They are the most abundant species in the mesopelagic zone of the Bering Sea (Pearcy et al., 1977; Sobolevsky et al., 1996), the Gulf of Alaska (Purcell, 1996), and the eastern North Pacific Ocean off Oregon (Pearcy, 1964; Pearcy et al., 1977). Northern smoothtongue also concentrate in areas bordering the continental slope and are widely distributed from southern British Columbia to the Bering Sea (Peden, 1981) and are very abundant in the Okhotsk Sea (Sobolevsky et al., 1996).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed data from National Marine Fisheries Service bottom trawl surveys carried out triennially from 1984 to 1996 in the Gulf of Alaska (GOA). The continental shelf and upper slope (0–500 m) of the GOA support a rich demersal fish fauna dominated by arrowtooth flounder (Atheresthes stomias), walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and Pacific Ocean perch (Sebastes alutus). Average catch per unit of effort (CPUE) of all groundfish species combined increased with depth and had a significant peak near the shelf break at 150–200 m. Species richness and diversity had significant peaks at 200–300 m. The western GOA was characterized by higher CPUEs and lower species richness and diversity than the eastern GOA. Highest CPUEs were observed in Shelikof Strait, along the shelf break and upper slope south of Kodiak Island, and on the banks and in the gullies northeast of Kodiak Island. Significant differences in total CPUE among surveys suggest a 40% increase in total groundfish biomass between 1984 and 1996. A multivariate analysis of the CPUE of 72 groundfish taxa revealed strong gradients in species composition with depth and from east to west, and a weak but significant trend in species composition over time. The trend over time was associated with increases in the frequency of occurrence and CPUE of at least eight taxa, including skates (Rajidae), capelin (Mallotus villosus), three flatfish species, and Pacific Ocean perch, and decreases in frequency of occurrence and CPUE of several sculpin (Myoxocephalus spp.) species. Results are discussed in terms of spatial and temporal patterns in productivity and in the context of their ecological and management implications.